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Preface

In 2008, Wiley-VCH published a translation of the ninth edition of the German
handbook “Wutz — Handbook of Vacuum Technology,” named after the author
of the first edition Max Wutz. This book has been a great success for five deca-
des and the object of many requests for a translation. Since its second edition,
the “Wutz — Handbook of Vacuum Technology” has become a multi-author
book covering the field of vacuum science, vacuum technology, and vacuum
techniques comprehensively. Since 2008, the German handbook underwent
significant changes and when it could be foreseen that the English edition would
run out of print, Wiley-VCH suggested to issue a second English edition “Hand-
book of Vacuum Technology,” which is a translation of the 11th German edition
of the “Wutz — Handbook of Vacuum Technology,” published by Springer
Vieweg. Chapter 17, however, received a new author and was newly written for
this second English edition. Compared with the first English edition, also Chap-
ters 10 and 12 were written by new authors while improvements were made in
most of the other chapters according to the changes in techniques.

Although multi-author, the book aims to be read as a single-author work, a
goal to which the present editor who himself has revised almost half of the con-
tent has stringently adhered to. The style is as uniform as possible, there are only
recurrences where necessary, and the same symbols and notation are used
throughout. Hence, the book has taken on textbook character, though it was
originally intended to be used as a technical handbook.

The main idea of the book is to cover all aspects of vacuum science and tech-
nology in order to enable engineers, technicians, and scientists to develop and
work successfully with the equipment and “environment” of vacuum. Beginners
in the field of vacuum shall be able to start and experts shall be able to deepen
their knowledge and find the necessary information and data to continue their
work.

Despite the fact that the applications of vacuum technology are steadily
increasing both quantitatively and qualitatively — note, for instance, that the
next chip generation will be illuminated under vacuum by extreme ultraviolet
(EUV) lithography — the number of scientists researching and teaching in the
field is on a steady decline. Thus, another task for a book like this is to both pre-
serve the knowledge of vacuum science and technology and enable self-studying

XX
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Preface

in the field. For this reason, the book may be at times too introductive and sim-
ple for experts and sometimes too specialized for beginners. The reader should
not be discouraged when experiencing this, but rather choose the information as
his/her personal level requires. Short explanations following the title of each
chapter describe the contents and may help the reader to choose the right chap-
ter for his/her needs.

We hope that also this second edition will be helpful to all readers of English
interested in a comprehensive and up-to-date overview in the field of vacuum
technology including its underlying science.

Even after many people read drafts and proofs, there will always be mistakes in
a book of this size. If you discover such or if you have any suggestions for
improvements, please send an email to the editor (karl.jousten@ptb.de). I will be
glad to consider your suggestions in future editions.

June 2015 Karl Jousten
Berlin, Germany
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The History of Vacuum Science and Vacuum Technology

Dr. Karl Jousten

Physikalisch-Technische Bundesanstalt, Vacuum Metrology, Abbestr. 2-12, 10587,
Berlin, Germany

In old Greece, before the time of Socrates, the philosophers searched for the
constancy in the world, that is, what is behind the daily experience. The Greek
philosopher Democritus (circa 460 to 375 BC) (Figure 1.1) assumed that the
world was made up of many small and undividable particles that he called atoms
(atomos, Greek: undividable). In between the atoms, Democritus presumed
empty space (a kind of microvacuum) through which the atoms moved accord-
ing to the general laws of mechanics. Variations in shape, orientation, and
arrangement of the atoms would cause variations of macroscopic objects.
Acknowledging this philosophy, Democritus, together with his teacher Leucip-
pus, may be considered as the inventor of the concept of vacuum. For them, the
empty space was the precondition for the variety of our world, since it allowed
the atoms to move about and arrange themselves freely. Our modern view of
physics corresponds very closely to this idea of Democritus. However, his philos-
ophy did not dominate the way of thinking until the sixteenth century.

It was Aristotle’s (384 to 322 BC) philosophy that prevailed throughout the
Middle Ages and until the beginning of modern times. In his book Physica [1],
around 330 BC, Aristotle denied the existence of an empty space. Where there is
nothing, space could not be defined. For this reason, no vacuum (Latin: empty
space, emptiness) could exist in nature. According to his philosophy, nature con-
sisted of water, earth, air, and fire. The lightest of these four elements, fire, is
directed upward, whereas the heaviest, earth, downward. Additionally, nature
would forbid vacuum since neither up nor down could be defined within it.
Around 1300, the medieval scholastics began to speak of a horror vacui, meaning
nature’s fear of vacuum. Nature would abhor vacuum and wherever such a vac-
uum may be on the verge to develop, nature would fill it immediately.

Around 1600, however, the possibility or impossibility of an evacuated volume
without any matter was a much-debated issue within the scientific—philosophical
community of Italy, and later in France and Germany as well. This happened at
the time when the first scientists were burnt at the stake (Bruno in 1600).

Handbook of Vacuum Technology, Second Edition. Edited by Karl Jousten.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1.1 Democritus. Bronze statue around 250 BC, National Museum in Naples.

In 1613, Galileo Galilei in Florence attempted to measure the weight and density
of air. He determined the weight of a glass flask containing either compressed
air, air at atmospheric pressure, or water. He found a value of 2.2 g 7! for the
density of air (the modern value is 1.2g#™'). This was a big step forward: air
could now be considered as a substance with weight. Therefore, it could be
assumed that air, in some way, could also be removed from a volume.

In 1630, Galilei was in correspondence with the Genoese scientist Baliani dis-
cussing the water supply system of Genoa. Galilei argued that, for a long time,
he had been aware of the fact that the maximum height of a water column in a
vertical pipe produced by a suction pump device was about 34 feet. Baliani
replied that he thought this was due to the limited pressure of the atmosphere!

One can see from these examples that in Italy in the first half of the seven-
teenth century the ground was prepared for an experiment, which was per-
formed in 1640 by Gasparo Berti and in 1644 by Evangelista Torricelli, a
professor in Florence. The Torricelli experiment was bound to be one of the key
experiments of natural sciences.

Torricelli filled a glass tube of about 1 m in length with mercury. The open end
was sealed with a fingertip. The tube was then brought to an upright position
with the end pointing downward sealed by the fingertip. This end was immersed
in a mercury reservoir and the fingertip removed so that the mercury inside the
tube was in free contact with the reservoir. The mercury column in the tube
sank to a height of 76 cm, measured from the liquid surface of the reservoir.
Figure 1.2 shows a drawing of the Torricellian apparatus.

The experiment demonstrated that the space left above the mercury after
turning the tube upside down was in fact a vacuum: the mercury level was inde-
pendent of the volume above, and it could be filled completely with water
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Figure 1.2 Torricelli’s vacuum experiment in 1644. The level AB of mercury in both tubes C and
D was equal, independent of the size of the additional volume E in tube D. (From Ref. [2].)

admitted from below. This experiment was the first successful attempt to pro-
duce vacuum and subsequently convinced the scientific community. An earlier
attempt by Berti who used water was less successful.

In 1646, the mathematician Pierre Petit in France informed Blaise Pascal
(Figure 1.3) about Torricelli’s experiment. Pascal repeated the experiment and, in
addition, tried other types of liquid. He found that the maximum height was
exactly inversely proportional to the used liquid’s density. Pascal knew the equally
famous philosopher Descartes. During a discussion in 1647, they developed the
idea of air pressure measurements at different altitudes using a Torricellian tube.

Pascal wrote a letter to his brother-in-law Périer and asked him to carry out
the experiment on the very steep mountain Puy de Déme, close to Périer’s home.

Figure 1.3 Portrait of Blaise Pascal.
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Périer agreed and on September 19, 1648 [3], he climbed the Puy de Déme
(1500 m) accompanied by several men who served to testify the results, which
was common practice at the time. They recorded the height of the mercury
column at various altitudes. From the foot to the top of the mountain, the
difference of the mercury column’s height was almost 8 cm and Pascal was
very pleased: the first successful pressure measurement had been carried out!
Torricelli, however, never enjoyed the triumph of the experiment based on his
invention: he had died a year before.

Despite these experiments, the discussion between the plenists (no vacuum is
possible in nature) and the vacuists (vacuum is possible) continued. One of the
leading vacuists was Otto von Guericke, burgomaster of Magdeburg in Germany
from 1645 to 1676 (Figure 1.4).

He was the first German scientist who gave experiments a clear priority over
merely intellectual considerations when attempting to solve problems about
nature.

Around 1650, Guericke tried to produce a vacuum in a water-filled, wooden
cask by pumping out the water with a pump used by the fire brigade in Magde-
burg. Although the cask was specially sealed, the experiment failed: the air
rushed into the empty space above the water through the wood, developing a
chattering noise. Consequently, Guericke ordered to build a large copper sphere,
but when the air was pumped out, the sphere was suddenly crushed. Guericke
correctly recognized atmospheric pressure as the cause and ascribed the weak-
ness of the sphere to the loss of sphericity. The problem was solved by con-
structing a thicker and more precisely shaped sphere. After evacuating this
sphere and leaving it untouched for several days, Guericke found that the air was
seeping into the sphere, mainly through the pistons of the pump and the seals of

Figure 1.4 Portrait of Otto von Guericke in 1672. Engraving after a master of Cornelius Galle the
Younger. (From Ref. [4].)
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Figure 1.5 Guericke’s air pump no. 3. Design for Elector Friedrich Wilhelm, 1663. (From Ref. [4].)

the valves. To avoid this, he constructed a new pump where these parts were
sealed by water, an idea still used in today’s vacuum pumps, but with oil instead
of water.

Guericke’s third version (Figure 1.5) was an air pump, which pumped air
directly out of a vessel. These pumps were capable of producing vacua in much
larger volumes than Torricellian tubes.

The word pump is still used for today’s vacuum pumps, although they are
actually rarefied gas compressors. This is due to the origin of the vacuum pump:
the water pump used by the fire brigade in Magdeburg.

Guericke was also a very successful promoter of his own knowledge and
experiments, which he used to catch attention for political purposes. In 1654, he
performed several spectacular experiments for the German Reichstag in Regens-
burg. The most famous experiment demonstrating the new vacuum technique
was displayed in Magdeburg in 1657.

Guericke used two hemispheres with a diameter of 40 cm, known as the Mag-
deburg hemispheres (Figure 1.6). One of the hemispheres had a valve for evacua-
tion, and between the hemispheres, Guericke placed a leather ring soaked with
wax and turpentine as seal. Teams of eight horses on either side were just barely
able to separate the two hemispheres after the enclosed volume had been
evacuated.
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Figure 1.6 Painting of Guericke showing his experiment with the hemispheres to the German
emperor, Kaiser Ferdinand Ill. (From Ref. [4].)

News of Guericke’s experiment spread throughout Europe and his air pump
can be considered as one of the greatest technical inventions of the seventeenth
century, the others being the telescope, the microscope, and the pendulum
clock.

The new vacuum technology brought up many interesting experiments. Most
of them were performed by Guericke and Schott in Germany, by Huygens in the
Netherlands, and by Boyle and Hooke in England.

Guericke showed that a bell positioned in a vacuum could not be heard; a
magnetic force, however, was not influenced by the vacuum. Instead of metal, he
often used glass vessels in order to make the processes in vacuum visible. For
this, he used glass flasks from the pharmacist. These were called recipients, a
word still used today for vacuum vessels. Guericke put a candle in a glass vessel
and found that the candle extinguished slowly as evacuation proceeded. Huygens
suspended a lump of butter in the center of a vacuum jar and, after evacuation,
he placed a hot iron cap over the jar. In spite of the hot jar, the butter did not
melt. Animals set into vacuum chambers died in a cruel manner. Guericke even
put fish in a glass vessel, half filled with water. After evacuating the air above and
from the water, most of the fish swelled and died.

Noble societies of the seventeenth and eighteenth century enjoyed watching
experiments of this kind for amusement (Figure 1.7).

However, scientific experiments were performed as well during the early days
of vacuum. Huygens verified that the free fall of a feather in a vacuum tube was
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Figure 1.7 “Experiment on a bird in the air the plug at the top of the glass globe. By
pump,” 1768, by Joseph Wright, National Gal-  opening it, he saves the life of the already
lery, London. A pet cockatoo (top center) was  dazed bird. The man below the “experi-
placed in a glass vessel and the vessel was menter” stops the time until the possible
evacuated. The lecturer’s left hand controls death of the bird.

exactly equal to that of a piece of lead. Boyle found that the product of volume
and pressure was constant, while Amontons in France showed that this constant
was temperature-dependent (1699).

In 1673, Huygens attempted to build an internal combustion engine using the
pressure difference between the atmosphere and a vacuum to lift heavy weights
(Figure 1.8). Gunpowder, together with a burning wick, is placed in container C,
arranged at the lower end of cylinder AB. The violent reaction of the gunpowder
drives the air out of the cylinder through the wetted leather tubes EF. Cylinder
AB cools down and produces a vacuum. The tubes EF then flatten and seal, and
the atmospheric pressure drives down piston D, thus lifting weight G.

During the experiments, the importance of carefully cleaned materials became
obvious and it was realized that the quality of pumps would have to be
improved. Engineering improvements by Hooke, Hauksbee (1670-1713), and
others followed. Somewhat later, the Englishman H. A. Fleuss developed a piston
pump that he named Geryk in honor of Otto von Guericke.

However, it was not until 1855 that significantly better vacua could be pro-
duced using a pump designed by Geissler in Germany. Sprengel improved this
pump in 1865 and 1873 (Figures 1.9 and 1.10), which used Torricelli’s principle.
Ten kilograms of mercury had to be lifted up and down by hand for a pump
speed of about 0.004#s™!. About 6 h of pumping action was required to
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Figure 1.8 Huygens’ explosion motor. After the explosion of gunpowder in container C, the
temperature drops creating vacuum that lifts weight G. (From Ref. [3].)

A
D Exhaust
/gz"’_ " tube
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B,/ <
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— H
h’i‘ =
Figure 1.9 Sprengel’s first mercury pumps of 1865. A falling mercury droplet formed a piston

that drove the air downward (suction ports at D and “exhaust tube”). Later, Sprengel improved
the pump by adding a mechanism to recover the mercury. (From Ref. [5].)



The History of Vacuum Science and Vacuum Technology |9

Pumps:
X Mechanical pistons O Liquid pistons
b 1858 .
Vacuum gauges
Mercury gauges 1873 McLeo
l<— Guericke
10
Boyle ) Great Exhibiti
reat Exhibition
1 _1660 Hawksbee\X 1850
1704
Geissler
A 10
e Sprengel
o 102 [ 1865
5
[}
[}
o
3 103
g 10
£ x Fleuss
g .4 1894
s 107° [
Gimingham
L L 1884
10 Kahlbaum
1894
106 I | I ! | L |
1660 1680 1700 1820 1840 1860 1880 1900

Year >

Figure 1.10 Progress in lowest generated and measured pressures in vacuum from 1660 to
1900. (Data from Ref. [6].)

evacuate a vessel of 6 from 0.1 mmHg (13Pa) to about 2 x 107> mmHg
(2.7 x 1073 Pa)! With these pumps, for the first time, the high-vacuum regime
became available. In 1879, Edison used them in his Menlo Park to evacuate the
first incandescent lamps (Figure 1.11).

The early scientists who produced vacuum still had no clear definition of a
vacuum. They had no idea that air could consist of atoms and molecules, which
in part are removed to produce a vacuum. Until 1874, the Torricellian tube was
the only instrument available for measuring vacuum, and limited to about
0.5 mmHg (67 Pa). The idea of vacuum was still quite an absolute (present or
not) as in the Aristotelian philosophy but it was not accepted as a measurable
quantity. The gas kinetic theory by Clausing, Maxwell, Boltzmann, and others as
well as the invention of the gauge by McLeod (1874), however, showed that vac-
uum indeed was a measurable physical quantity.

The McLeod gauge (Figure 1.12), still applied in a few laboratories today, uses
Boyle’s law. By compressing a known volume of gas by a known ratio to a higher
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Figure 1.11 Edison’s production of incandescent lamps in Menlo Park in 1879. The man stand-
ing elevated pours mercury into a Sprengel pump (Figure 1.9) to evacuate an incandescent
lamp.

pressure, which can be measured using a mercury column, the original pressure
can be calculated.

Huygens’ idea of using the pressure difference between the atmosphere and a
vacuum to build an engine was continued by Thomas Newcomen in the eigh-
teenth century. He used condensed steam to create vacuum. Newcomen'’s
engines were broadly used in England to pump water from deep mine shafts, to
pump domestic water supplies, and to supply water for industrial water wheels
in times of drought. His machines predate rotary steam engines by 70 years.

Another exciting development in the history of vacuum technology took place
when atmospheric railways were constructed in England during the mid-nine-
teenth century. Since steam locomotives at the time were rather unreliable, dirty,
noisy, heavy, and not able to face steep gradients, a group of imaginative engi-
neers conceived a plan to build clean, silent, and light trains driven by the force
between the atmosphere and a vacuum on the surface of a piston placed between
the rails.

In 1846, Brunel built such a system on the South Devon coast of England
(Figure 1.13).

A continuous line of a cast iron tube was arranged centrally between the rails.
The pressure difference of the external atmosphere on its rear and the rough
vacuum on its front surface propelled a tightly fitted piston inside the tube.
Huge stationary pumps placed in about 5 km intervals along the track generated
the vacuum. The underside of the first railway coach was connected to a frame
forming the rear end of the piston. Along the top of the tube was a slot closed by
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Figure 1.12 Original McLeod vacuum tube; and (g) reservoir of mercury. As soon as
gauge [7]. (@) Measuring port; (b) simple the mercury is lifted to the level of (e), the
siphon barometer; (c) glass bulb with a gas in (c) is compressed developing a height
volume of 48 ml and a volume tube at the difference between (d) and the tube above
upper end having identical diameter as the (c) according to the volume ratio.

measuring tube (d); (f) vertical 80 cm long

a longitudinal airtight valve, consisting of a continuous leather flap reinforced
with iron framing.

An average speed of 103kmh™" over 6 km was reported for these trains, which
was breathtaking at the time. However, atmospheric railways did not prevail.
Accidents with starting trains, the lack of control by the engineer on board, and
the inefficiency of the longitudinal valve (e.g., rats ate through the leather seal-
ing), among other reasons, contributed to their demise.
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S

Figure 1.13 Drawing of the vacuum traction of) the piston. (b) connects the piston with the
tube to propel an atmospheric railway. Piston  leading wagon of the train. Wheel (c) lifts and
(a) slides forward due to the action of a vac- opens the longitudinal valve (d) while wheel
uum pump positioned in front of (to the right (e) closes it. (From Ref. [8].)

The large advances in physics in the second half of the nineteenth century are
almost unthinkable without the aid of vacuum technology. Hauksbee already dis-
covered gas discharges at the beginning of the eighteenth century. Significant
progress, however, was only possible after the invention of the Geissler pump in
1855. Three years later, Pliicker found that the glow of the glass wall during a gas
discharge shifts when a magnetic field is applied. In 1860, Hittorf discovered that
the rays from a cathode produce a very sharp shadow if an object is placed in
between the cathode and a glass. Many scientists continued research on cathode
rays, which finally led to the discovery of the electron as a component of the
cathode rays by J. Thomson in 1898.

In 1895, Rontgen reported that when a discharge is pumped to less than 1 Pa, a
highly penetrating radiation is produced capable of passing through air, flesh,
and even thin sheets of metal. He named the beams X-rays.

In 1887, Hertz discovered the photoelectric effect under vacuum. In 1890,
Ramsay and Rayleigh discovered the noble gases. All these experiments helped
to understand the nature of vacuum: the increasing rarefaction of gas atoms and
molecules. At the time, it became clear that any matter in nature consists of
atoms.

In 1909, Knudsen [9] published a comprehensive investigation on the flow of
gases through long and narrow tubes. He divided this flow into three regimes:
the molecular regime at very low pressures, where the particles are so dilute that
they do not interact with each other but only with the surrounding walls, the
viscous regime at higher pressures, where the motion of particles is greatly influ-
enced by mutual collisions, and an intermediate regime. This publication can be
considered as the beginning of vacuum physics.

For his experiments, Knudsen used the so-called Gaede pump. Gaede, a pro-
fessor at the University of Freiburg in Germany, was the most important
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8935 A.

Figure 1.14 Gaede’s mercury rotation pump. R indicates the position of the suction port. (With
kind permission of the Gaede Foundation at Oerlikon Leybold GmbH, Cologne, Germany.)

inventor of vacuum pumps since Guericke. Gaede’s pump was a rotary mercury
pump (Figure 1.14), in which the Torricellian tube was wound up so that it
allowed continuous pumping by rotary action. The pump was driven by an elec-
tromotor. Its pumping speed was 10 times faster than the Sprengel-type pump
and produced vacua down to 1 mPa. However, it required an additional pump in
series because it was able to compress the gas only up to 1/100 of atmospheric
pressure.

The sliding vane rotary vacuum pump was developed between 1904 and 1910,
based on an idea of aristocrat Prince Rupprecht, which dated back to 1657 [10].
Gaede optimized these pumps in 1935 by inventing the gas ballast, which
allowed pumping condensable gases as well.

Gaede carefully studied Knudsen’s work, and at a meeting of the German Phys-
ical Society in 1912 introduced his first molecular pump (Figure 1.15) [11].
Gaede used the finding that any gas molecule hitting a wall stays at its location
for a while and accommodates to the wall before it leaves the same. If therefore a
gas particle hits a fast moving wall, it will adopt the velocity of the wall and is
transported in the direction of the motion during its sojourn time. The pumps
based on this principle require very high rotor speeds and low clearances of
about 20 pm between the moving wall and the fixed wall. The pump floundered
on these requirements, which were too stringent for the technology available at
the time. In 1958, however, Becker utilized the principle and invented the turbo-
molecular pump [12], which eased the clearance problem.

In the years 1915 and 1916, Gaede and Langmuir developed the mercury dif-
fusion pump [13,14]. Twelve years later, the oil diffusion pump followed, which
was the most widespread pump until the turbomolecular pump was developed.

In addition, vacuum measurement also developed further (Figure 1.16) using
other pressure-dependent properties of gases: Sutherland suggested to use the
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Figure 1.15 Gaede’s molecular pump of 1912.

viscosity of gases in 1897. Langmuir put this principle into practice in 1913 using
an oscillating quartz fiber. The decrement in amplitude of the oscillations gave a
measure of gas pressure. In 1960, /. W. Beams demonstrated that the decelera-
tion in rotational frequency of a magnetically suspended steel ball rotating at
about 1 MHz under vacuum could be used as a measure of pressure. Fremerey
optimized this device during the 1970s and 1980s. Pirani [15] used the pressure
dependence of thermal conductivity and built the first thermal conductivity
gauge in 1906. In 1909, von Baeyer showed that a triode vacuum tube could be
used as a vacuum gauge. Penning invented the cold cathode gauge in 1937 in
which a gas discharge is established by crossed electric and magnetic fields.
During the Second World War, mass spectrometers were developed, and they
became crucial parts of the weapons industry.

After World War 1II, it was generally believed that diffusion pumps would not
be able to generate pressures below 1078 Torr although the underlying effect was
unknown. All manufacturers’ pumping speed curves showed a value of zero at
this point. The pressure was measured using triode gauges. During the Physical
Electronics Conference in 1947, Nottingham suggested that the impingement of
X-ray photons on the collector of the triode causing secondary electrons might
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Figure 1.16 Progress in lowest pressures generated and measured in the twentieth century.
(Data from Ref. [6].)

be the reason for this lower pressure limit. This was a breakthrough. A competi-
tion for a significant improvement of the ion gauge started, which Nottingham’s
own group did not win, to his regret. Instead, in 1950, Bayard and Alpert [16]
succeeded with an idea as simple as ingenious (Figure 13.48).

Since all vacuum gauges except for the McLeod and the Torricellian tube had
to be calibrated, and because, at the same time, vacuum industry grew to an
important branch (see Chapter 2), independent metrological laboratories were
set up in state-owned institutes in the late 1950s. The first were established at
the National Physical Laboratory (NPL) in England. The Laboratory for Vacuum
Physics (today: Vacuum Metrology) at the Physikalisch-Technische Bundesan-
stalt” (PTB) in Germany followed in 1966, and in the 1970s the Vacuum Labora-
tory at the National Bureau of Standards (NBS; today: NIST) in the United
States.

1) German National Metrology Institute.
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Figure 1.17 In between galaxies, there are small volumes of a few dm? without any
massive particle (absolute or ideal vacuum). Oldest known galaxies pictured by the Hubble
Space Telescope. (Courtesy of NASA.)

Coming back to the philosophical considerations at the beginning of this
chapter, let us make a concluding remark on the nature of vacuum from the
point of view of today’s physics [17,18]: without any doubt, there are macro-
scopic areas, for example, small volumes between galaxies, where there is no sin-
gle molecule (Figure 1.17). For such a volume, the term absolute vacuum was
introduced. We know today, however, that even absolute vacuum is not empty
(in terms of energy). Otherwise, it would not be in accordance with the laws of
nature. A vacuum energy with still unknown nature, which may be related to the
cosmological constant introduced by Einstein, permits particles to be generated
spontaneously by fluctuating quantum fields for short time intervals, even in
absolute vacuum. In this sense, there is no space in the world, which is truly

empty.
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Applications and Scope of Vacuum Technology
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Berlin, Germany

By the time Edison produced incandescent light bulbs, vacuum technology left the
niche of a pure laboratory technique. Five hundred automatic Sprengel pumps
were utilized in Edison’s first production site. Since then, many other important
industries, for example, microelectronics to name only one, developed that
required vacuum technology. From an economic point of view, these industrial
applications are much more important for vacuum industry than its applications
in physics research. According to a survey of engineering federations in Europe,
the United States, and Japan [1], about 40% of the sales of vacuum-related equip-
ment of companies in these regions go into semiconductor industry. This is by far
the largest segment of the vacuum technology market. The significance of vacuum
technique for physical research, however, has not dropped at all. Hardly any phys-
ical experiment is conducted outside of a vacuum environment.

Figure 2.1 provides a selection of industrial applications of vacuum technique
under different vacuum regimes; Figure 2.2 shows applications in physical research
methods. Both lists are not intended to be complete. They rather show the variety
and diversity in the field of applications of vacuum technology. Even for products
in everyday use, vacuum technology plays an important role, for example, freeze
drying or vacuum packaging of food, coating of PET lemonade bottles to reduce
the loss of carbon dioxide gas, coating of architectural glass to reduce the loss of
thermal energy, or recycling of mercury from batteries or electronic waste.

Applications of vacuum technology require a pressure range of about 15
orders of 10, from 107*°Pa in the extreme vacuum to 10°Pa at atmospheric
pressure. This is an enormous challenge for vacuum measuring technique as
well as the applied vacuum pumps and materials. Table A.20 lists a selection of
pumping systems used in different areas.

Some important new research areas such as life science, analysis of polymers,
and catalytic research require vacuum for analytical tools but higher (atmo-
spheric) pressure for the targets under investigation. This is accomplished with
pressure stages. Additionally, in electron beam welding, the target is at

Handbook of Vacuum Technology, Second Edition. Edited by Karl Jousten.
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Industrial applications of vacuum technology

Vacuum metallurgy 10°Pa ... 10° Pa

Annealing, melting, casting of metals
Melting by electron beam
Degassing of metal or steel

Crystal growth 10" Pa... 10" Pa
Zone melting of silicon

Electron beam melting 10°Pa ... 10° Pa

Physical vapor deposition 10°Pa...1Pa

Architectural glass coating
Coating/hardening of tools
Wear protection
Coating of PET bottles
Coating of optical devices, glasses, lenses, mirrors
Decorative coating
Metallization of plastic material and foils
Magnetic memories
Chemical vapor deposition 1Pa ... 10°Pa
Medicine and medical engineering 107 Pa ... 10 Pa
X-ray tubes, cancer therapy
Sterilisation of instruments, wound healing
Drying and degassing 10%Pa ... 10° Pa
Degassing of liquids
Casting of resin and lacquer
Casting and drying of plastic materials
Drying of insulating materials

Recycling 10 Pa ... 10" Pa
Chemical industry 10’ Pa ... 10’ Pa
Laboratory technique
Processes
Freeze drying 1Pa...10"Pa
Pharmaceutical industry
Food processing
Food packaging 10’ Pa ... 10° Pa
Electrical engineering 107 Pa ... 107" Pa
TV picture tubes

Monitors, oscilloscopes

Light bulbs, fluorescent tubes
Transmitter tubes, receiver tubes
Vacuum high power switches

Semiconductor technology 10° Pa ... 10° Pa
Wafers: oxidation, plasma etching, ion implantation i
Mobile phones 0007 V021
Flat panel displays
CD metallization . ..
EUV lithography o WL

Figure 2.1 Selected industrial applications of vacuum technology.
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Vacuum technology in the research area

Biotechnology

Elementary particle physics

Gravitational wave detectors

Growth of thin films
Molecular beam epitaxy
Nuclear fusion

Mass spectrometers

Materials research
Neutron scattering

Metrology
Mass determination
Radiometry

Nanotechnology (STM, AFM)

Surface analytics
SIMS
SEM, TEM
ESCA/XPS, UPS
AES, LEED
lon sources

Plasma research

Synchrotron radiation
Soft to hard X-radiation

Low-temperature research

Space simulation

Figure 2.2 Selected physical research methods operated under vacuum.

10 Pa-10° Pa

10° Pa-10"° Pa

10° Pa-10"° Pa

10° Pa-1 Pa
10" Pa-10"° Pa
10° Pa-10"' Pa

10° Pa-10" Pa

10" Pa-10" Pa

10 Pa-10" Pa

10° Pa-10° Pa
10° Pa-10"Pa

107 Pa-10° Pa

10° Pa-10"° Pa

10° Pa-10" Pa

10° Pa-10" Pa

CERN accelerator
SPS

1947

Fusion research in
the ASDEX, IPP,
Germany

Neutron scattering on
silicon

Omikron
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environmental pressure whereas electrons are accelerated under high-vacuum
conditions. A new branch of cancer therapy using ion beams represents another
example where the target (patient) is at atmospheric pressure, but beams are
accelerated in ultrahigh and high vacuum.

In the microelectronics industry (Figure 2.3), vacuum is mainly necessary for
producing thin oxide layers, plasma etching, chemical and physical vapor deposi-
tion, and ion implantation. A good portion of the investment for a new DRAM
factory is spent on vacuum technology. As the integration on chips increased,
the purity of vacuum as well as of process gases gained importance [2—5]. Also,
exhaust management for health protection of staff and for protecting the envi-
ronment is an important issue [6]. The service intervals of pumps in the semi-
conductor industry were extended greatly by utilizing dry (oil-free) pumps.

The increased corrosion resistance of dry pumps is also of great value in the
fluorination of plastics [7]. Surfaces of synthetic materials require activation by
fluorine as a pretreatment for coating and gluing.

Since around the year 2000, sustainable energy plants have become a strong mar-
ket for vacuum technology. The production of solar cells needs vacuum for the
manufacturing of silicon crystals, thin film coating (also for thin film solar cells),
and final laminating. Solar thermal power stations need glass tubes coated in vac-
uum. Rotors in wind turbines are manufactured from fiber-reinforced materials that
have been fabricated by vacuum infusion. They are mounted on their posts by vac-
uum lifts able to carry weights of 32 t. In the inner part of the wind turbine, vacuum
contactors limit and switch electrical currents of more than 2000 A.

Figure 2.3 Vacuum technology is critical for microelectronics industry. (Photo by the Max-
Planck Society.)
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A less known application of vacuum technology, not listed in Figure 2.1, is
water treatment, for example, of long-distance heating water or high-purity water,
used mainly for reducing oxygen content [8] but also for wastewater treatment [9].
Problematic wastewater is evaporated and the distillate can be recovered.

In the automotive industry, rough- and fine-vacuum pump systems are used
before the filling of brake systems, servo-steering systems, and air-conditioning
systems [10]. Vacuum methods are employed to check the tightness of such sys-
tems and engines.

Vacuum is of great importance for heat insulation purposes, be it in cryotech-
nology, refrigerators, or even buildings [11]. Evacuated, nanoporous foams yield
10 times higher heat flow resistance than conventional foams.

To mention more of a curiosity, acoustic characteristics of wood for musical
instruments can be improved by applying vacuum heat treatment [12].

Surface analysis is certainly the main field of application in research. In this
area, the transition between industrial and other applications is smooth. An
example is vacuum metallization of forensic traces by vaporization sources [13]:
fingerprints become visible and identifiable by metallization with zinc or gold.

The longest vacuum system in the world is the 27 km long vacuum tube of the
LEP accelerator (Large Electron Positron Collider) of CERN, placed in a subterra-
nean tunnel near Geneva. It is not in operation currently because the vacuum
tube of the LHC (Large Hadron Collider) is built into the same tube. However,
the latter will soon be completed. These facilities provide a basis for investigating
the elementary particles of all matter and of the processes that occurred shortly
after the Big Bang gave birth to our universe.

Even larger in terms of volume are the vacuum systems of gravitational wave
detectors constructed at several sites across the globe [14]. The LIGO detectors
(Laser Interferometer Gravitational Wave Observatory) in Washington and Loui-
siana feature two vacuum tubes each with a length of 4km and a diameter of
1.2 m (Figure 2.4).

Space simulation chambers require even larger volumes. The biggest vacuum
space chamber, used by NASA, is located in Sandusky, Ohio, USA (Figure 2.5).

The probably largest single compact ultrahigh vacuum chamber of the world, with
1400 m3, was installed in 2006 in the Research Center Karlsruhe (now Karlsruhe
Institute of Technology). The huge chamber contains the electron energy spectrom-
eter by which means the mass of the neutrino shall be determined (Figure 2.6).

Sufficiently efficient, economical, and easy-to-operate vacuum pumps are
available for all vacuum ranges.

e For the rough-vacuum regime — Side channel blowers
(10° to 10* Pa) — Rotary lobe blowers
— Dry rotary pumps

— Claw vacuum pumps

— Diaphragm pumps

— Liquid ring pumps (combined with vapor jet
pumps, if applicable)
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e For the rough- and fine-vacuum regime - Oil-sealed vacuum pumps (gas ballast pumps)
(10% to 107! Pa) — Screw pumps

— Spiral pumps

— Scroll pumps

— Roots pumps

— Vapor jet pumps

e For the high-vacuum regime — Diffusion pumps
(107" to 107° Pa) — Turbomolecular pumps
— Multistage roots pumps
e For the high- and ultrahigh-vacuum — Turbomolecular pumps
regime (< 107° Pa) — Ion getter pumps
— Titanium sublimation pumps
— NEG pumps
— Cryopumps

To connect the various components (pumps, valves, vacuum gauges, pipes,
chambers, vapor traps, and other accessories), a range of standardized flanges
are available up to large diameters (DN 1000), as well as carefully developed and
thoroughly tested welded and brazed joints. For leak testing, the helium leak
detector has become the standard test instrument. Its sensitivity is sufficient to
detect and localize even the smallest leaks that could affect the performance of
an apparatus or plant. National and international standardization activities

Figure 2.4 The gravitational wave detector LIGO near Hanford in the desert of the State of
Washington in the United States. Each arm of the Michelson interferometer is under ultrahigh
vacuum and 4 km long.
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Figure 2.5 Largest space simulation chamber in the world in Sandusky, Ohio, USA. The Plum
Brook Station Space Power Facility is part of NASA’s Glenn Research Centre. The vacuum
chamber has a diameter of about 30 m and a height of about 40 m. (Photo by NASA.)

Figure 2.6 Transportation of the main spectrometer chamber of the Karlsruhe Neutrino Project
(KATRIN) through Leopoldshafen-Eggenstein on November 25, 2006. (Picture courtesy of KIT.)
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covering the area of vacuum technology (Table A.22) have helped much to sim-
plify design, operation, and maintenance of vacuum plants, as well as to increase
their flexibility and make them economical. Standardized measuring methods
are available for a series of vacuum technological quantities, such as the pump-
ing speed of pumps or the critical backing pressure. Vacuum plants can be con-
structed in virtually any size.

The considerable advances in vacuum technology of the past decades were
triggered mainly by increasing technological requirements arising from the
chemical and process engineering side [15]. Most recent developments were
concerned particularly with the following problems:

e Improved purity of vacuum by dry rough pumps.

¢ Development of single-stage pumps.

¢ A comprehensive calibration system for vacuum gauges.

e Reduction of outgassing rates for bakeable and non-bakeable vacuum
systems.

The range of problems concerning pure vacuum is associated particularly
with the production of hydrocarbon-free vacuum. In the past, it was created
preferably with sorption and condensation pumps. Research on their behavior
used the methods of surface and boundary layer physics, which focuses on
the interaction of gases and solid surfaces. Thus, a close association between
this discipline and that of vacuum physics and technology evolved. Of the
numerous research methods and procedures, those of electron spectroscopy
and secondary ion mass spectrometry have found wide-scale applications.
These processes, carried out under ultrahigh-vacuum conditions, are applied
routinely in analytics.

Today, a large number of mechanical pump varieties such as mechanical
pumps, piston pumps, screw pumps, claw pumps for generating dry, that is,
carbon-free, vacuum, are available. They serve as roughing pumps for high-
vacuum pumps as well as for generating rough and fine vacuum. In addition to
the advantage of an oil-free vacuum, these types of pumps are robust against
aggressive media and dust and feature higher vapor tolerance. Due to their pro-
longed service intervals and their improved environmental compatibility com-
pared with oil-sealed pumps, their cost of ownership is low.

Generating vacuum and maintaining it under various operating conditions has
become a routine task. Since the 1970s, the number of physicists dealing with
vacuum science is in steady decline. Today, advances in vacuum technology are
mainly engineering developments. The withdrawal of science from the field
bears the risk that the basics of vacuum science and technology play a less
important role in the educational work of universities. Thus, today’s state of the
art in vacuum technology might face deterioration in practical applications.
Since vacuum science and technology is a basic science for many areas of indus-
try and other sciences, this development would have many undesired effects.
Continuing the education in the field and keeping it up to date is one of the
tasks of this book.
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This chapter explains the most important fundamentals of vacuum physics,
focusing on the macroscopic equation of state, the kinetic theory of gases, and
the description of transport phenomena.

3.1
Description of the Gas State

3.1.1
State Variables

Due to the bond between its molecular particles, a solid or liquid substance
occupies a certain volume hardly influenced by ambient conditions (tempera-
ture, pressure, etc.). Therefore, this volume is an inherent property of the sub-
stance. A gas behaves differently: when a container holds a certain amount of
gas, the gas spreads across the complete inner volume of the container and fills
it homogeneously. The larger the container, the thinner the gas. The container’s
volume V determines volume as well as state of the gas.

The gas in the container exerts a force on the walls of the container (Figure 3.1).
A larger wall area is subject to a larger force than a smaller wall area. Therefore, it
is convenient to introduce the term pressure p. The quantity pressure is defined as
the ratio of the force F, exerted perpendicularly to a surface element of the con-
tainer’s wall, to the area of this surface element A:

F

p= 1 (3.1)

In vacuum technology, the term pressure usually refers to absolute pressure
(based on an ideal vacuum). Pressure is an important quantity when describing
the gas state.

Handbook of Vacuum Technology, Second Edition. Edited by Karl Jousten.
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Figure 3.1 Pressure exerted to the walls of a container by a gas.

The word vacuum typically means a dilute gas or the corresponding state at
which the pressure or density is lower than that in the surrounding atmosphere
(ISO 3529/1). DIN 28400/1, on the other hand, defines vacuum as a state where
pressure is smaller than 30 kPa (300 mbar), which is the lowest pressure that may
exist on the surface of the earth.

The defining equation (3.1) shows that pressure is a derived quantity. The unit
of pressure in the International System of Units (SI) is given by

_[F] _newton _ _
[p] =[]~ mete = pascal = Pa. (3.2)

One pascal (unit symbol Pa), therefore, is the pressure at which a force of 1N
(= 1 kg ms72) is exerted perpendicularly to a flat surface of 1 m?.

A number of additional pressure units are in use; the most important are listed
in Table 3.1.

According to SI, the only additional unit accepted besides Pa is bar (and
mbar). The unit mmHg is often used in medicine (for blood pressure, internal
eye pressure). In the United States, the units torr and, for higher pressures, psi
are common in vacuum technology.

A certain pressure value, corresponding approximately to the pressure of
atmospheric air at sea level, that is, normal atmosphere, has been defined as
standard pressure p, (ISO 554, ISO 3529/1, DIN 1343):

P =101 325 Pa = 1013.25 mbar (3.3)

In vacuum-technology applications, where the value of negative pressure with
respect to ambient pressure is of interest (e.g., lifting devices with a vacuum
sucker), the term relative vacuum is also used. At normal pressure, the relative
vacuum is 0%, whereas it is 100% in an ideal vacuum. For any pressure p, relative
vacuum is calculated according to

Relative vacuum := 222 5 100%. (3.4)

Pn
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Table 3.1 Pressure units according to I1SO 3529/1, Appendix A.

Unit Unit, definition Conversion

symbol

bar Bar 1bar = 10° Pa

Mbar Millibar 1 mbar = 100 Pa

Torr Torr = 1/760 of standard 1 Torr = 101 325/760 Pa ~ 133.322 Pa ~ 4/3 mbar
pressure p,

mmHg  Millimeters of mercury = the 1 mmHg = 133.322 Pa
pressure exerted at the
bottom of a vertical column of
mercury, 1 mm deep, at
standard acceleration due to
gravity and at 0°C

H Micron = micrometers of 1 pumHg ~ 0.133322 Pa
mercury = the pressure
exerted at the bottom of a
vertical column of mercury,
1 pm deep, at standard
acceleration due to gravity
and at 0°C
psi Pound-force per square 1 psi ~ 6894.76 Pa
inch = pressure due to weight
(at standard acceleration due
to gravity) of one American
pound to an area of one
square inch

Standard acceleration due to gravity is g, = 9.80665 m s~2.

Example 3.1

A lifting device for aluminum sheet metal (or glass panes) establishes a pressure
of p=120mbar in its vacuum suckers. The relative vacuum calculates to
[(1013 — 120) mbar/1013 mbar] x 100% = 88%.

The pressure of a gas in a container changes when the temperature changes.
Therefore, also temperature is an important quantity, characterizing the gas
state. In everyday life, temperature is usually given in Celsius (centigrade). Here,
we will use 9 (theta) as a symbol for Celsius temperature, [9] = C (°C).

For characterizing the gas state, it is convenient to use the thermodynamic
temperature (referring to absolute zero) rather than using Celsius. This tempera-
ture is referred to as Kelvin temperature, the symbol is T, and the unit [7T] is K
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Thermodynamic Celsius
temperature temperature
Symbol: T Symbol: 9
Unit: Kelvin, K Unit: degree Celsius, °C
373.15K + + 100°C
Same
scale
divisions
T,=273.15K + 4+ o0°C
263.15K + + -10°C
10K + + -263.15°C
oKk_LAbsolute] 575 45-c

zero

Figure 3.2 Comparison of Celsius and Kelvin temperature scales.

(Kelvin). 1K is defined as the 1/273.16 fraction of the temperature at the triple
point (& = 0.01 °C) of pure water.

Then, the normal freezing point of water is T, = 273.15 K. Thus, the relation-
ship between the thermodynamic temperature 7" and the Celsius temperature &
is (Figure 3.2)

LI ‘9+273 15 (3.5)
K C o :

The different temperature scales are compared in Figure 3.2.

International agreements promoted introduction of the thermodynamic-
temperature scale [1]: the International Temperature Scale of 1990 (ITS-90)
published by the Consultative Committee for Thermometry (CCT) of the
International Committee for Weights and Measures (CIPM) is an equipment
calibration standard for making measurements on the Kelvin and Celsius
temperature scales. ITS-90 is an approximation of the thermodynamic tem-
perature scale that facilitates the comparability and compatibility of tempera-
ture measurements internationally by defining calibration points (Table 3.2),
that is, triple and freezing temperatures of pure substances. Temperature val-
ues related to ITS-90 are denoted by the subscript 90. As reference gauges,
3He- and *He-vapor-pressure thermometers are used in the temperature
range of 0.65-5K, gas thermometers for 3-24.6 K, platinum resistance ther-
mometers above 13.8 K, and spectral pyrometers above 1235 K.
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Table 3.2 Fixed reference points of ITS-90 [1].

Equilibrium condition Too (K) tgo (°C)

Helium vapor pressure 3to5 —270.15 to —268.15
Triple point of equilibrium hydrogena) 13.8033 —259.3467

Vapor pressure of equilibrium hydrogena) ~17 to ~20.3 ~—256.15 to ~ —252.85
Triple point of neon 24.5561 —248.5939

Triple point of oxygen 54.3484 —218.7916

Triple point of argon 83.8058 —189.3442

Triple point of mercury 2343156 —38.8344

Triple point of water 273.16 0.01

Melting point of gallium 302.9146 29.7646

Freezing point of indium® 429.7485 156.5985

Freezing point of tin® 505.078 231.928

Freezing point of zinc® 692.677 419.527

Freezing point of aluminum® 933473 660.323

Freezing point of silver® 1234.93 961.78

Freezing point of goldb) 1337.33 1064.18

Freezing point of copperb) 1357.77 1084.62

a) At room temperature, equilibrium hydrogen (e-H,) is a mixture in which the hydrogen nuclei in
75% of the H, molecules spin in the same direction (ortho-H,), and the nuclei in 25% of the H,
molecules spin in opposite directions (para-H,).

b) Freezing points at pressure 101325 Pa.

The temperature of the melting point of water is referred to as standard tem-
perature (ISO 554, ISO 3529/1, DIN 1343):

To:=273.15K, 8,:=0.00°C. (3.6)

If the pressure and temperature of a gas each are of standard values, the gas is in
standard condition, that is, normal atmosphere.

To summarize, three state variables characterize the condition of a gas in a
closed container:

e volume V;
e pressure p;
e temperature T or 9.

3.1.2
Extensive Quantities

The amount of a gas (or of a liquid or solid) can be specified in different ways:

e mass 1
e particle number N;
e amount of substance v.
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The unit of mass m in the International System of Units (SI) is kg (kilogram).
However, mass often is a rather inconvenient unit to describe the amount of a
gas. On one hand, the mass is usually small and therefore difficult to measure,
and on the other hand, the particle number, or the amount of the substance, is a
quantity better suitable for characterizing the physical behavior of gases.

In this book, the term particle refers to both simple atoms and composite mol-
ecules. In many languages, the terms atoms (monatomic particles, e.g., noble
gases) and molecules (polyatomic particles, e.g., nitrogen) are differentiated
when considering gas particles. In English, however, the word molecule often
refers to a small particle, without discriminating between atoms and molecules.
A gas consists of many individual gas particles. Therefore, the number of indi-
vidual particles is a quantity that describes the amount of a gas. This dimension-
less quantity is referred to as the particle number N. The particle number is a
comprehensible quantity and appears in calculations frequently. For common
amounts of gas, the particle number is very large and therefore practically
impossible to measure.

A practical method to describe the amount of a gas is to specify the amount of
the substance v. It is obtained by scaling the actual amount of a substance to a
certain reference amount. In the International System of Units (SI), this refer-
ence is one mole (symbol: mol). Following Avogadro’s constant N ,

Na = 6.022142 x 10% mol ™}, (3.7)

the amount of one mole of a substance corresponds to 6.022142 x 10?3 particles.
The amount of the substance v of any amount of a gas can be calculated from
the number N of its gas particles:

N

v = ]\TA . (3.8)

If the temperature T of a gas is known, the pV value at T may also be used since
the product p - V is proportional to the amount of gas, according to Egs. (3.18)—
(3.20).

For a gas that is distributed evenly within a volume (filling the volume homo-

geneously), its density, that is, the ratio of its amount and volume, can be calcu-
lated:

Mass density (density) p:= ‘T/, [p] = kg m™. (3.9
. N -3
Number density of molecules n:= Vv [#] = m™. (3.10)

For calculations, it is useful to introduce the mass mp of an individual gas parti-
cle. The mass m of an amount of gas with N particles is obtained by multiplying
the number of particles with the particle mass:

m = Nmp, [m]=][mp]=kg. (3.11)
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Table 3.3 Selected relative particle masses, particle masses, and molar masses.

Particle Relative particle Particle mass mp Molar mass M

mass M,
He (atom) 4.003 04.003 u = 6.647 X 1077 kg~ 04.003 x 1072 kg/mol
H, (molecule)  2.016 02.016 u =3.348 x 1007 kg 02.016 x 1072 kg/mol
N, (molecule) ~ 28.013 28.013u =4.652x 1072 kg  28.013 x 10~ kg/mol

Additionally, the molar mass M of a substance is introduced by
M=" = Namp, [M]=kgmol™. (3.12)
v

The mass of a gas particle is very small. Therefore, mass is often not given in
the SI unit kg but in the atomic mass unit u. It is defined as 1/12 of the mass of
carbon-12 isotope and has the value

u = 1.660538 x 10 kg. (3.13)

Following the definitions, a simple relation connects Avogadro’s constant N
and the atomic mass unit u:

kg

—_—. 3.14
10 mol ( )

Nau=
In addition, the relative particle mass M, is also used. It is obtained by scaling
the mass of a particle to the atomic mass unit (see also Table 3.3):
M, = % [M,] = 1. (3.15)
A; (relative atomic mass) is also used as a symbol for the particle mass of an
atom.

313
Equation of State of an Ideal Gas

In the seventeenth century, Boyle and Mariotte conducted experiments in Eng-
land and France, respectively, to investigate the relationship between the pres-
sure and volume of fixed amounts of gases. As the experiments showed, the
volume V decreases when the pressure p rises. The two found a quantitative
relation, indicating that, for constant temperature, the product of pressure and
volume is constant (Boyle—Mariotte law):

pV = constant, fixed amount of gas at 7 = constant. (3.16)
In 1704, Amontons discovered that a change in gas temperature leads to a

change in pressure. Toward the end of the eighteenth century, experiments con-
ducted by Charles and Gay-Lussac revealed that, for a fixed amount of gas, the
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product pV increases linearly with a rise in temperature. Conversely, the product
pV decreases linearly when the temperature drops and, for sufficiently low tem-
peratures, approaches zero. This indicated the existence of a lowest possible
temperature referred to as absolute zero.

For characterizing gas properties, it is appropriate to use the thermodynamic
temperature scale, based on absolute zero. Kelvin introduced it around 1900
(Section 3.1.1).

This leads to the equation of state of an ideal gas:

pV

= constant, for a fixed amount of gas.

The constant is proportional to the amount of gas. The three types of the equa-
tion of state of an ideal gas are obtained by expressing the amount of gas with
mass m, particle number N, or the amount of the substance v:

V = mR,T, (3.18)

p

pV =NkT or p=nkT, (3.19)
V =uRT. (3.20)

P

The above equations include the following fundamental constants:
Boltzmann’s constant & = 1.380650 x 10723 J KL (3.21)

Molar gas constant R = 8.314472 ] mol ™ K™
= 8.314472 Pam?®mol™! K™! (3.22)
= 83.14472 mbarlmol ' K.

The constant R, however, depends on the gas species:

) k R 1
Specific gas constant Ry = Wl_p =0 [Rs] =7 kg T, (3.23)
The equation of state of an ideal gas allows calculating the volume of the gas per
amount of substance under standard conditions (p, = 101 325 Pa, T, = 273.15K).
This volume is referred to as the molar volume under standard conditions V molar n:

RT
Vinolarn = —— = 22.413996 x 10> m® mol ™. (3.24)
Pn
Therefore, under standard conditions, one mole of an ideal gas requires a vol-
ume of approximately 22.4 7.

Additionally, the number density of particles n, under standard conditions,
known as the Loschmidt constant, can be calculated:

ny = 20 = 2.686777 x 10% m™. (3.25)
kT,
The equation of state of an ideal gas can be plotted. In a p—V diagram, the
curves for constant temperatures appear as an array of hyperbolic curves, called
isotherms (Figure 3.3).
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Figure 3.3 Isotherms of an ideal gas.

The behavior of real gases differs more or less from ideal-gas behavior,
depending on the conditions of state. Section 3.4.1 focuses on this in more detail.
For example, the value of the product pV for air under standard conditions is
approximately 0.02% smaller than for an ideal gas. The deviation is higher under
higher pressure and at lower temperature.

3.14
Mixtures of Different Gas Species

To this point, we assumed that the investigated gas consists solely of particles
that are all of the same mass. In practice, however, one often deals with mixtures
of gases. According to Dalton, the total pressure p, , caused by the gas mixture is
equal to the sum of the partial pressures p; of the individual gases (each marked
with the subscript i); thus (Dalton’s law of partial pressures),

ik k i
%FZPFZN L_NKT S~ N (3.26)

v VvV &~ N

i l

This equation introduces the number of gas particles N; of gas species i as well
as the total number N = )" N; of all gas particles. The ratio N;/N, the number
of particles of gas species i relative to the total number, corresponds to the rela-
tive volume fraction of gas i, and also to the ratio p,/p,.;.

For many calculations, it is practical to treat the gas as if it was made up of
hypothetical gas particles with a mean molar mass M. This quantity is obtained
from the weighted average

=(u)

N;

Yy

(3.27)
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Example 3.2

Dry air is a mixture with the main components (Table A.6):

Gas species Molar mass (1073 kg mol™) Relative volume function
Nitrogen 28.013 0.7809
Oxygen 31.999 0.2095
Argon 39.948 0.0093
Carbon dioxide 44.010 0.0003

The composition of air can be thought of as 780.9 £ nitrogen, 209.5 £ oxygen,
9.3 7 argon, 0.3 Z carbon dioxide, brought together and mixed to yield 1000 £ of
dry air. Using Eq. (3.27), the mean molar mass of the gas mixture

) x 1073 kg mol™'
+39.948 - 0.0093 + 44.010 - 0.0003
0.7809 + 0.2095 + 0.0093 + 0.0003 (3.28)
28.964 x 1073 kg mol™'
- 1.0000

( 28.013-0.7809 + 31.999 - 0.2095
M =

= 28.964 x 1073 kg mol™".

Solving for the density p of an ideal gas yields

m pM
=—=—. 3.29
V RT ( )
Example 3.3
The density of dry air under standard conditions (101 325 Pa, 273.15K) is
101 325 Pa - 28.964 x 1073 k I~
- a ads 9 MO _ 4 2922kgm=2. (3.30)
8.314472 Jmol™ K" - 273.15K

3.2
Kinetic Theory of Gases

3.2.1
Model Conceptions

A gas completely fills an available volume and shows a number of macroscopic
properties: it has a temperature and exerts a temperature-dependent pressure to
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the walls. An equation of state, Eqs. (3.18)—(3.20), connects the state quantities
pressure, volume, and temperature. Additionally, a gas is capable of conducting
frictional force between surfaces in motion (viscosity), transferring thermal
energy between surfaces with unequal temperatures (thermal conductivity), and
can influence spreading of molecular particles (diffusion).

These different properties of a gas can be explained easily by considering the
microscopic behavior of individual gas particles (atoms, molecules), by means of
the kinetic theory of gases. This theory is based on the conception that a gas
consists of a very large number of tiny particles that move thermally (kinetics).
The moving particles hit the walls of the container and one another. All colli-
sions are assumed elastic, that is, the total energy is conserved. During a colli-
sion, however, velocities of the colliding particles change with respect to value
and direction, following the mechanical laws of collisions. The kinetic theory of
gases derives the macroscopic properties of a gas from the microscopic motion
of individual particles.

Kronig developed the kinetic theory of gases as a model in Berlin during the
mid-nineteenth century. Later, it was verified in experiments and has proven
very successful. Using the model, the pressure on a wall can be calculated from
the molecular impacts of many individual particles. It therefore permits develop-
ing the equation of state of a gas. Furthermore, the transport properties viscosity,
thermal conductivity, and diffusion can be derived easily. This is briefly dis-
cussed in the following sections.

In its simplest form, the kinetic theory of gases assumes that gas particles are
small, hard spheres with a fixed diameter, and which remain practically unaltered
during a collision, such as billiard balls. This conception often already yields
good understanding of reality and is used in this chapter. When further develop-
ing the model, soft spheres can be assumed that deform like rubber balls during
a collision and additionally attract one another mutually when they come close.

322
Wall Pressure due to Impacting Particles

The hard-sphere model of gas particles is used to calculate wall pressure. In the
calculation, N gas particles, each having the mass mp, being in a volume V/, that
is, a cube with an edge length d, are considered (Figure 3.4). To simplify matters,
the particle size is assumed to be negligibly small. The particles are evenly
(homogeneously) distributed in the volume and move about randomly (kinetic
motion). The directions of motion are distributed isotropically in three
dimensions.

Of all gas particles, one third, 1/3N, each move along or reversely to the x-, y-,
or z-axis. The movement is described by the terms velocity ¢ (vector ¢ or vector
component c,) or speed c (absolute value). We will now consider an individual
particle moving back and forth horizontally between the confining walls of the
cube in the x-direction. The velocity c, of the particle is constant. Before
impacting a wall, the momentum of the particle is mpc,; after colliding, it leaves
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Of

A

Figure 3.4 Particle motion in a cube and resulting wall pressure.

the wall with a momentum —mpc,. The value of the momentum therefore
changes by 2mipc, during the collision.

If the particle moves at constant velocity c,, it hits the walls periodically. The
collision frequency, that is, the number of collisions per time interval, is the ratio of
velocity ¢, and traveling distance (2d for back and forth distance), that is, ¢, /(2d).

According to the laws of mechanics, the force that is exerted to the wall is the
product of the change in momentum per collision and the collision frequency:
¢ mpci
2 d

The pressure is calculated from the force by dividing the wall force by the
wall’s surface area (d?):

Wall force caused by particle = 2mipc, (3.31)

mpci 1 mPci

d d& &
d? can be written as volume V. The pressure applied to the wall by the total gas
is obtained by multiplying the wall pressure caused by a single particle with the
number of particles hitting the wall (1/3N):

szci N N mPcﬁ

Wall pressure caused by particle = (3.32)

— 3.33
& 3 3V (3:35)
Rearranging the equation finally yields
}’}’lpC2
pV =N—2=, (3.34)

3

When comparing Eq. (3.34), obtained from the kinetic theory of gases, with
the experimentally found equation of state (3.19), the two equations correspond,
if the velocity ¢, complies with the following relation:

Cx = | /3k—T. (3.35)
mip
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In our simple model, the speed ¢ of a particle is just the absolute value of its
velocity c,. Then, by rewriting using Eq. (3.23):

[3RT

Example 3.4

The speed of a hypothetical air particle (Table A.6) at 20 °C amounts to

=502ms". (3.37)

(@) = 3.8.314472Jmol™ K" - 293.15K
B 0.028964 kg mol™'

Thus, the speed of a hypothetical air particle is very high, higher than the
speed of sound (343m s~ at 20 °C). This result is understandable when we con-
sider that the sound is transmitted as pressure variations by the gas particles.

Additionally, Eq. (3.36) yields that the speed of gas particles rises when the tem-
perature increases and that heavy gas particles are slower than lighter particles.

3.23
Maxwell-Boltzmann Velocity Distribution

In the previous section, we assumed that all gas particles travel with the same
velocity c,. Collisions between particles were neglected.

In fact, however, particles do collide mutually due to their finite particle size.
Depending on the type of collision between two particles (head-on or rather
grazing), velocity values and directions change. Similar considerations apply to
collisions with a wall. A real vessel wall is not a static, flat surface but shows
microscopic roughness and vibrates thermally. Thus, the collision with a wall is
not a simple reflection.

Opverall, a large number of collisions occur within a gas, and the sheer number
makes it impossible to consider them individually. This may initially create the
impression that quantitative relations of gas properties cannot be derived from
microscopic behavior. However, this is not the case. On closer inspection, we
find that just the large number of particles allows deriving accurate mean values
of motion quantities.

To begin with particle velocity, general symmetry considerations suggest that
all directions of motion (arbitrary orientation in three dimensions) appear
equally often. Considering the component velocity of all gas particles in any
given direction, for example, the x-direction, particles possess different values
that can be positive (along the considered direction) or negative (opposite to the
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considered direction). This behavior can be expressed mathematically using a
distribution function, for example, the function F; for the normalized x-compo-
nent velocity c,. Normalization is performed by dividing by the most probable
velocity ¢y, (see Eq. (3.42) below):

G oLl AN
" (cmp> TN d(ex/emp) (3:38)

Here, dN is the fraction of particles from the total number N with a velocity
component in the x-direction in the interval from c,/cmp to (cx + dcy)/cmp When
the components in the y- and z-directions are of arbitrary values. As all particles
are considered, the normalizing condition reads

J F ( = )d(c—") =1 (3.39)
—o0 Cmp Cmp

Now what does the velocity distribution F; look like? Around 1860, Maxwell
presumed a Gaussian bell-like distribution curve. Boltzmann determined the
absolute value of the velocity about one decade later. The velocity distribution is
therefore referred to as the Maxwell-Boltzmann velocity distribution (Figure
3.5). Later, it was derived precisely from statistical mechanics [2]. Modern com-
puter simulations that calculate the motion and collisions of large numbers of
particles, as well as many experiments, have verified this distribution. It reads

2
1l— ) =—=exp| — . 3.40
Fi(2) =L exp[ - & (3.40)
Crmp \/71- y

This one-dimensional velocity distribution is symmetric to the axis of the ordi-
nate because positive and negative velocity values appear equally often.

A F

0.207

I | | | I I |
20 -15 1.0 -05 0 05 10 15 20

Cx
- >

Cmp

Figure 3.5 Distribution function of the normalized one-dimensional particle velocity ¢, accord-
ing to Maxwell and Boltzmann.
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Figure 3.6 Normalized distribution function of the absolute values of particle velocity ¢ according
to Maxwell and Boltzmann.

The distribution Fy of speed values ¢, that is, the absolute value of the velocity
vector, can be obtained by integration over the F; distributions of the three
directions with boundary condition of fixed c¢. Calculation leads to the function
given below, represented in Figure 3.6:

c 4 2 2
F =— - —exp|——]. 341
‘ <CmP> \/; C%"lp P < C%‘Ap) ( )

For normalization, the most probable speed cyp, that is, the peak speed, has
already been used, indicating the speed value at the peak of the distribution
function Fy. In order to describe macroscopic phenomena, it can be advanta-
geous to use other speed values. The mean speed ¢ is obtained by calculating the
weighted average of the gas particles’ speed values. The effective speed ces is
determined by calculating the square root of the weighted average of the gas
particles’ squared speed values. Calculation yields the following values:

Most probable speed ¢y, = argument value where F obtains its maximum

=1/2LT= ,/LRT: V2R, T = 1/2l’. (3.42)
mp M p

Arithmetic mean thermal speed ¢ = J cFy <i> dc
0 Cmp

8kT 8RT 8 8
=1/L=,/_=,/_RST= [P (3.43)
Tmp aM b4 p
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Effective speed = root-mean-square speed  Cims = J c2F, (L) dc

0 Cmp
13kT [3RT 3
mp M P
Example 3.5

Velocity calculation for hypothetical air particles (Table A.6) at 20 °C. The molar
mass M = 0.028964 kg mol™" (Eq. (3.28)):

Crmp =410 ms™", (3.45)
€=463ms", (3.45)
Crms = 502 ms™". (3.47)

3.24
Collision Rate and Effusion

Many macroscopic properties of a gas, for example, pressure, are determined by
the impingement rate at which gas particles collide with a surface. Here, the
term collision rate jy; is introduced, also referred to as the rate of incidence. It is
defined as the number of collisions with a surface per unit area and time. The
kinetic theory of gases allows calculating the collision rate, when assuming a
Maxwell-Boltzmann velocity distribution:

Collisi te Number of collisions with wall N  nc
ollision rate j,, := ===
IN Area of wall X time At 4

B (3.48)
- pe
= T
An application example for using the collision rate is a gas flow through an
opening in a wall, referred to as effusion (gas escape) (Figure 3.7). A thin wall
that has a small hole with the area A separates one vessel from the other.
If the pressure in vessel 1, to the left of the wall, is p;, the temperature is T,
and the pressure in vessel 2 is negligible, the particle flow (= number of particles
per unit time) leaving the vessel 1 is

Number of emanating particles

Effusion-particle flow g, :=

_ Time (3.49)
) e nc
ING = Tt T

A precondition for this equation is that the pressure is small enough so that
disturbing collisions between gas particles do not occur in the area of the
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vessel 1 vessel 2

opening > effusion
area A flow

p1, T p2=~0

Figure 3.7 Effusion from a vessel.

opening (molecular flow). For the volumetric flow of the escaping gas, the above
equation yields

Emanating gas volume
Effusion-volumetric flow g, := £8

Time
(3.50)
_AV_AN/n_c,
At~ At 4

Example 3.6

The vessel to the left (Figure 3.7) contains air at pressure p =1 mPa and a tem-
perature of 20°C; the opening has an area A = 1cm?. With ¢=463ms~' and
T =293 K, we calculate

1073 Pax463ms™!

x 1% 107 m?

= 4 x1381x 105K 293K (3.51)
=2.86x10"s7",
463 ms™
gy =M% 10 m? = 0.0116m?s ' = 11,65 (3.52)

3.25
Size of Gas Particles and Free Path

So far, the size of the gas particles remained unconsidered. Their sizes play a
crucial role for transport phenomena. Different methods are available to deter-
mine the size, as shall be discussed next.

When a gas is cooled far enough, it initially liquefies and finally freezes. A
certain amount of gas then forms a liquid or solid with a certain volume. The
assumption is plausible that the individual atoms and molecules in a solid are
arranged as small, closely packed spheres. Using this model, the volume filled by
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an individual particle can be calculated by dividing the particle mass by the den-
sity of the solid. Based on the used volume, the diameter of the sphere is
obtained after specifying the structure in which the spheres are arranged in the
solid.

Example 3.7

At 4K, nitrogen is a solid with a density of 1035 kg m~3. The volume required by
a nitrogen molecule amounts to 28u/1035 kg m~3 = 4.5 x 1072° m3, correspond-
ing to a cube with an edge length of 3.6 x 107 m = 0.36 nm.

Modern experimental methods, such as structure analysis by X-ray diffraction or
surface scanning with an atomic force microscope, allow direct measurement of
the distance between two particles, and therefore, of their size. Results reveal that
the diameter of simple gas particles (i.e., individual gas atoms) amounts to approx-
imately 3 x 107 m = 0.3 nm, quite independent of the gas species. As gas parti-
cles, in fact, are not hard spheres, their size is not well defined but depends on the
type of phenomenon observed, as will be discussed in Section 3.4.2.

During their kinetic motion, gas particles come into contact when the distance
between their centers drops below their diameter. The collision changes the par-
ticles” directions and speeds. Due to multiple particle collisions, the path of an
individual particle follows a zigzag route (Figure 3.8).

The path lengths that a particle travels between two successive collisions vary
due to the statistical motion of the particles. An average value of this path length
can be defined, referred to as the mean free path I.

We will now calculate this mean free path, while assuming that the gas parti-
cles are small hard spheres with diameter d. Furthermore, we shall presume that
no force is transferred between particles except during elastic collisions. First, we
will consider a simplified case in which a gas particle travels through a virtual gas
volume V (cross-sectional area A, thickness s), containing static particles of the
same species (Figure 3.9).

A moving gas particle collides with a stationary gas particle inside the volume
if the distance between their centers drops below the particle diameter d. Thus,
the effective collision area (perpendicular to the particle’s trajectory) for this

Figure 3.8 Zigzag path of a gas particle.
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Figure 3.9 A gas particle traveling through a volume of gas.

collision amounts to zd?. The total effective collision area for all possible colli-
sions is obtained by multiplying the individual areas with the number N of
atoms in the volume:

Total collision area = Nzd? = nVrd* = nAs nd>. (3.53)

The larger the thickness s of the layer, the more probable a collision. In the case
of a statistical (irregular) arrangement of the stationary gas particles in the vol-
ume, the thickness of the layer amounts to the mean free path, thus s = [, if the
total effective collision area (Eq. (3.53)) is equal to the geometrical area A. This
leads to the condition

= (gas particles in the volume assumed stationary). (3.54)

Due to the statistical arrangement of the gas particles in the volume, an incom-
ing particle passes the distance s = [ without collisions with a probability of 37%,
and passes the distance s = 4/ with a probability of just under 2%.

In reality, all gas particles travel with a statistic velocity distribution according
to Maxwell-Boltzmann. Therefore, more collisions occur and the mean free
path drops. Maxwell investigated this problem in 1860 and added a factor of

1/4/2 to Eq. (3.54):

= 1
l= m (all gas particles in motion). (3.55)

This formula is valid when the mean free path is defined as the total distance
traveled by molecules in a time period divided by the total number of their
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collisions in this period. Other definitions of the mean free path may be used, for
example, the mean distance moved by a molecule between a given instant and its
next collision. These definitions lead to slightly different numerical values,
see [2]. Nearly all literature uses Eq. (3.55) and so will we.

By replacing the number density of particles n with the term p/(kT) in
Eq. (3.55), and by moving p to the left-hand side, we find

p=—T_ (3.56)
P \/Eﬂ'dz '

Thus, for a particular gas (with particles of diameter d), the product of mean free
path and pressure depends only on the temperature.

Example 3.8

At a temperature of 20 °C, a hypothetical air particle (Tables A.7 and A.9) has a
diameter of d = 0.37 nm. The product /p amounts to

I = 1.38x 1072 JK™'- 293K

—— = 0.0066 m Pa. (3.57)
V2 72(0.37 X107 m)

Under atmospheric pressure (10°Pa), the mean free path is only
6.6 X 1078 m = 66 nm. However, under high vacuum of 107* Pa, it reaches 66 m
and therefore exceeds the size of common vacuum systems.

Mean free path is an important term, for both a descriptive characterization of
gas behavior and a quantitative calculation of macroscopic gas properties. The
larger a gas particle, the more often collisions occur, the lower the free path, and
the poorer the transport properties for frictional force (viscosity) and heat energy
(thermal conductivity).

When comparing the transport properties calculated using the kinetic theory
of gases with experimental data at different temperatures, the gas particles seem
to grow when the temperature drops. Sutherland gave an empirical description
of this behavior in 1894. He formulated the following relation between the diam-
eter d of a gas particle and the temperature 7'

A(T) = de\/1+ Tp/T. (3.58)

Here, d, is the particle diameter at very high temperature and T'p is Suther-
land’s constant, with the dimension of a temperature. At temperature Tp, the
effective particle diameter is twice as high as at very high temperature.
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Example 3.9

The value of Sutherland’s constant for hypothetical air amounts to approximately
102K (Table A.9). Therefore, the diameter of an air particle at 20 °C is larger by a
factor of 4/1+ 102K/293 K = 1.16 than the diameter at very high temperature.

As is known today, Sutherland’s approach describes the fact that real gas parti-
cles attract one another due to electrostatic polarization when they come close.
When the temperature drops, the particle velocity decreases. The mutual attrac-
tion then increasingly affects the particle paths and the particles seem to grow.

The ratio of mean free path to mean particle velocity is referred to as mean
time t between individual collisions:

(3.59)

T=

all ~

Example 3.10

Hypothetical air at standard conditions shows [=6.6x10°%m and ¢=
463 ms~' so that the mean time between two collisions is only 1.4 x 1070 s,

The volume collision rate y, that is, the temporal average of the number of
collisions between two gas particles in a volume per unit time and volume, is
calculated from

n HC W _p 9 T _pfP\>
:—:—_:—Cdn :—Cd (—) . (3.60)
ST V2 V2 o T
The factor 1/2 in this equation takes into account that two particles are involved
in each particle—particle collision.

Example 3.11

The volume collision rate for hypothetical air under standard conditions is

10° Pa 2
1.38x 1072 JK™' - 293K (3.61)

-
Y

=8.6x10*m=3s".

463 m s (3.7 x 1071 m)? (

The concepts of time between two collisions and volume collision rate are intu-
itively understandable. However, they are not required for a precise quantitative
calculation of observable quantities. Thus, whether the given definitions in fact
represent statistically correct average values is irrelevant in this context.
Figure 3.10 compiles various gas properties as a function of pressure.
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Figure 3.10 Gas-kinetic diagram for air at 20 °C: pressure dependence of the mean free path /,
average time 7 between two collisions, collision rate j,, particle number density n, and volume
collision rate y.

33
Transport Properties of Gases

331
Pressure Dependence

Transport properties of a gas include the following macroscopic properties:

e Transmission of frictional force through the gas shear stress (viscosity).

o Transfer of thermal energy through the gas heat flux (thermal conductivity).

¢ Influence on spreading of particular individual particles through the gas
(diffusion).

In order to understand the concepts of transport of frictional forces and ther-
mal energy by the gas, the geometry of two plates at a distance x is considered.
The transport properties depend crucially on the ratio of the free path [ to the
distance between the two plates x (Figure 3.10).

If the ratio [/x is far above 1, the system is in the so-called molecular regime.
Here, gas particles nearly travel freely from one plate to the other. When the pres-
sure, that is, the particle number density, increases, more and more particles are
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available for transport. Thus, the transport ability increases linearly with the pres-
sure. In the molecular regime, the transport properties are proportional to pressure.

In the case of [/x being far below 1, the condition is referred to as viscous
regime. An individual gas particle now only travels a small fraction of the dis-
tance between one plate and the other before it encounters a collision. By the
collision, only part of the transported quantity (momentum or energy) is trans-
ferred in the forward direction while the remaining portion moves backward.
Thus, collisions impede transport processes from one plate to the other. If the
pressure rises, the number of particles available for transport increases but the
mean free path decreases. This means that more and more collisions hinder the
transport of momentum and energy. The result is that, in the viscous regime,
transport properties of a gas (viscosity and thermal conductivity) are indepen-
dent of pressure.

332
Transport of Frictional Forces in Gases and Viscosity

In order to understand internal friction, two plane parallel plates are considered,
with area A and distance x. The bottom plate is stationary while the above plate
moves at velocity v (Figure 3.11).

Initially, we consider the low-pressure case (molecular regime) in which the gas
particles travel back and forth between the plates (nearly) without any mutual
collisions. The number of gas particles hitting the upper plate per unit time is
calculated by multiplying the collision rate j,; (Eq. (3.48)) with the area A of the
plate:

dN 1 pc
& k—TA. (3.62)

We will first presume that the particles that hit the moving plate, on average,
do not carry any velocity component in the direction in which the plate is mov-
ing. During reflection at the plate, the particles, on average, take on a part of the
plate’s velocity. This fraction is described by the so-called tangential-momentum
accommodation coefficient:

Tangential-momentum accommodation coefficient oy
_ mean tangential velocity of reflected particles (3.63)

velocity of plate

Figure 3.11 Frictional force between two moving plates.
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Because the moving plate gives the gas particles a tangential velocity, a decelerat-
ing force occurs at the plate, that is, the frictional force. This force is calculated
from the number of particles hitting per unit time (Eq. (3.48)) area and the mean
change in momentum of a particle:

1 e
Fr = i %Aatmw in the molecular regime. (3.64)
k

Using the definition of the mean speed, Eq. (3.43), the equation can be rewritten
as

Fr = 2 pAth in the molecular regime. (3.64b)
7 c

Actually, it is necessary to take into account the momentum accommodation of
the gas particles at both plates. After leaving the upper plate, the gas particles, on
average, carry a tangential velocity component. This is reduced (but not to zero)
during the reflection at the bottom plate, so that in effect the particles, on aver-
age, already travel at a tangential velocity when hitting the above plate. Let o
and oy denote the momentum-accommodation coefficients at plates 1 and 2,
respectively. For the effective total momentum-accommodation coefficient
needed in Eq. (3.64), calculation yields

0102

(3.65)

op=— " —.
Ot + Ot — 01101

In the case of equal momentum-accommodation coefficients at both plates
(o1 = oy1) we find

Ot1

(3.66)

o= 2— Ot1 '

We will now consider the high-pressure case (viscous regime), that is, the
mean free path is small compared to the distance between the plates (I < x).
In this case, the accommodation behavior of the gas at the plates only has an
influence in the immediate vicinity of the plates or, more precisely, in a bound-
ary layer with a thickness of several free-path lengths. For calculation of the fric-
tional force, this boundary layer is negligible. Thus, for approximation, full
accommodation may be assumed in the high-pressure case.

Calculating the frictional force via the kinetic theory of gases requires taking
into account and averaging the momentum transfer from one gas particle to
another during collisions, a tedious and complicated task. In order to understand
the process, a descriptive, simplified approach is helpful. For this, we divide the
volume (thickness x) between the plates into numerous thin sheets separated
by imaginary parallel plates at distances of twice the free path 2/ (layer model)
(Figure 3.12). The factor 2 appears to be chosen arbitrarily at the moment. Just
this factor will yield the exact expression of the viscosity, which will be calcu-
lated later.
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Figure 3.12 Velocity profile of layers between two moving plates.

When the layer thickness is 2/, there are x/(2[) layers between the real outer plates.
The relative velocity between the upper and lower side of a layer amounts to 2v//x.

The frictional force between the two plates is the same as that between the
upper and the lower side of a layer. The latter can be taken from Eq. (3.64),
setting o, = 1 and replacing v by 2vl/x. Thus, we get

2 2w
Fr = -pA=—
T in the viscous regime. (3.67)

N
V4 cC X

Experimental investigations have revealed that, in laminar flow, the frictional
force is proportional to the plate area A and to the velocity v, and is inversely
proportional to the distance x between the plates. Therefore, Newton’s formula-
tion is used for the frictional force:

dv
dx’

This is the definition of the (dynamic) viscosity 5, a property of the fluid
between the plates. Comparing the frictional force, Eq. (3.67), with Newton’s for-
mulation, we obtain for the viscosity

Fr=nAY and Fg=nA (3.68)
X

4 pl

=22 (3.69)
T C

As pl is independent of pressure, so is 5. Frequently, Eq. (3.69) is rewritten by

taking the pressure from Eq. (3.43):

p= ngZ. (3.70)
8
This produces the following result for viscosity:
1 -
n= Epcl. (3.71)

This equation gives a prefactor of 1/2, which agrees well with experimental
data. As early as 1860, Maxwell performed qualitative assessments and had
already obtained an equation such as Eq. (3.71) for viscosity, but including a pre-
factor of 1/3. The numerically incorrect prefactor first derived by Maxwell still
appears in a number of textbooks today.
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With considerable mathematical effort, a correct calculation of the viscosity
of a gas from the individual particle—particle collisions is possible. In 1915,
Chapman used an analytical calculation in the hard-sphere model of gas parti-
cles that, as one would expect, again yielded an equation of the type (3.71), but
included a prefactor of 0.491 in first approximation, and a prefactor of 0.499 in
second approximation. Later, statistical calculations confirmed this result. For
practical applications, the prefactor 0.499 may be replaced by 1/2, as written in
Eq. (3.71). Remember that this result was derived here by proper choice of the
layer thickness 2/in the simple layer model.

The viscosity of a gas in the viscous regime can be measured precisely in
experiments (e.g., by assessing the frictional force on moving plates or laminar
flow through a pipe). Figure 3.13 surveys viscosity data for various gas species.

As the density p of a gas and the mean particle velocity ¢ can be calculated
reliably, Eq. (3.71) provides the straightest method to obtain the mean free path
from experimental viscosity values:

== (3.72)

: _
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Figure 3.13 Viscosity of selected gas species in the viscous range versus temperature.
(Data taken from Ref. [3].)
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and the equivalent free path £, which is defined as

2 - 4 C
p=—j="—_. 1 T (3.73)
Vi VEp
Furthermore, one calculates the product of mean free path and pressure,
Ip="an, (3.74)
4
and the particle diameter (Eq. (3.56) rearranged)
kT
Z == (3.75)
\f n
Example 3.12
At 20 °C, the viscosity of air is 18.2 x 107° Pa s. Using this, calculation yields
7p=%463ms‘1 18.2%x107%Pas=6.6 x 107> m Pa, (3.76)
2 /1 1.38x 1072 JK™' - 293K
d==,/—=x — =37%x10""m. (3.77)
V27 463ms~1-18.2x107°Pas

In some applications, the frictional force over the whole pressure regime is
required. A simple formula, which describes the limiting cases of the molecular
regime and the viscous regime correctly, is obtained by combining the corre-
sponding results given in Eqs. (3.64) and (3.67):

1 1 1

= 3.78
Fr  Fr(molecular) * Fg(viscous) (378)
giving
A
Fp=—22Y (3.79)
D

The transitional region is treated in more detail in Section 5.4.1.

333
Transport of Heat in Gases and Thermal Conductivity

We will consider two plane plates with area A and distance x. The temperatures
T; and T of the plates differ (Figure 3.14).

If the space between the plates contains matter, heat transport occurs from the
warmer to the colder plate. Transport of heat through a gas is very similar to fric-
tion behavior. From a macroscopic point of view, thermal energy is transferred by
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Figure 3.14 Heat transfer between two plates at different temperatures.

heat transport, while a force is transferred by friction. On the microscopic scale,
gas particles absorb energy at the warmer plate and release it at the cold plate
during heat transport. In force transport, they pick up momentum at the fast-mov-
ing plate and release it at the slow-moving plate. Calculating the thermal transport
of a gas in the kinetic theory of gases is analogous to calculating the frictional force
in the previous section, and therefore, will be presented in brief.

Clearly, the transport of heat is proportional to the amount of heat that an
individual gas particle can absorb and carry. The thermal energy of a particle is
stored in its forward motion (translatory energy). In molecules, internal motion
(vibration X vibration and rotation) adds to the thermal energy. This concept is
described using the degree of freedom f of a particle.

Atoms (noble gases and metal vapors) have a degree of freedom f =3
because they can perform translatory motion in three dimensions. At room
temperature, the degree of freedom for diatomic molecules (e.g., air) amounts
to f = 5 because three translatory motions (as in atoms) and, in addition, two
directions of rotation may occur. Although the molecule may rotate around
all three axes (x,y,z), the rotation of a diatomic molecule around the axis
that connects the two nuclei hardly contains any energy. This is because the
particle mass concentrates nearly completely in the extremely small atomic
nucleus. Therefore, the angular momentum of rotation around the axis con-
necting the nuclei is very small.

Additional degrees of freedom arise from the vibrating motion of the individ-
ual atoms within a molecule. For air at room temperature, this motion is hardly
excited, as the necessary quantum-mechanical energy barrier is higher than the
thermal energy. In the case of polyatomic hydrocarbon molecules with weak C—
H bonds, room temperature is sufficient to excite many vibrations, and thus, to
create a correspondingly high degree of freedom. While the temperature rises,
the thermal energy increases and more states of motion are excited. Thus, the
degree of freedom and the heat capacity increase with temperature.

The heat capacity Cy of an individual gas particle located in a vessel with
fixed volume (indicated by the subscript V') amounts to

Cy =gk. (3.80)

Thus, the specific heat capacity ¢y (ratio of heat capacity and mass) and the
molar heat capacity cyy (ratio of heat capacity to the amount of substance)
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Figure 3.15 Molar heat capacity at constant pressure of selected gas species versus temperature.
(Data taken from Ref. [3].)

of a gas are

S Lin =L
= 2 o , Cmv = 2kNA = 2R (381)

Cy

Data collections often list the heat capacity at constant pressure (indicated by
subscript p) (Figure 3.15). This has a higher value than the heat capacity at con-
stant volume because, for constant pressure, the volume increases with tempera-
ture and, therefore, additional work is spent for the volume change. For ideal
gases, the heat capacities at constant pressure and constant volume are easy to
convert:
p:m-ﬁzcv+£, Cmp = Cmv +R = <1+£>R. (3.82)
2 my mp 2
As an example, for noble gases f=3; then cy,, = (1+3/2)R=20.8] mol ' KL
Furthermore, the quantities can be converted using the isentropic exponent «:

c Cm
G _ Cmp _ o (3.83)
Cy  Cmv
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For calculating the heat transport of a gas, we will first consider the low-pressure
case (molecular regime). The number of gas particles that hit one of the plates
per unit time is given by the collision rate j.

For an initial investigation, we will presume that the mean energy of the parti-
cles hitting Plate 2 at temperature 7, averagely corresponds to the energy of the
temperature 7, of Plate 1 (75> T;). During reflection at Plate 2, the particles
pick up part of the higher thermal energy. This fraction is referred to as the
energy-accommodation coefficient ar:

Energy-accommodation coefficient ar

Real heat flux

= . 3.84
Theoretical heat flux at complete accommodation (3.84)

Table 3.4 contains a selection of experimental data on the energy-accommoda-
tion coefficient.

Plate 2 is cooled by the fact that the gas particles, on average, pick up thermal
energy during the reflection at the plate. The heat transferred here is calculated
by multiplying the collision rate j,;, area A, energy-accommodation coefficient
ag, heat capacity Cy (Eq. (3.81)) of an individual particle, and the temperature
difference. Incorporating the expressions for the variables yields

P =jNAaE§ k(T2 - Tl) (385)

This equation is not quite correct because deriving it included an incorrect
average across the statistical velocity distribution of the gas particles. Not
only does a particle with higher velocity have more energy, but also it moves
faster and therefore transfers this energy in less time, and thus, better. When

Table 3.4 Energy accommodation coefficients for selected gas species on platinum surfaces.

Gas species Clean surface Technical surface
Helium He 0.03 0.38
Neon Ne 0.07 0.74
Argon Ar 0.55 0.86
Krypton Kr 0.84
Xenon Xe 0.86
Mercury Hg 1.00 1.00
Hydrogen H, 0.15 0.29
Nitrogen N, 0.77
Oxygen O, 0.42 0.79
Carbon monoxide cO 0.78

Carbon dioxide CO, 0.77
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calculating this effect, we find that the factor f in Eq. (3.86) must be replaced
with f + 1:

f+

: L (s =1, (3.86)

P=jNAaE

Data tables rarely list the degree of freedom f of a gas, but the isentropic expo-
nent « instead. Using the relation f = 2/(k — 1), we finally obtain the following
equation for the heat transport:

K+1T2—T1
k-1 T

P=—pcAag in the molecular regime. (3.87)

| =

To this point, the energy accommodation of the gas particles was only consid-

ered at the upper plate. In fact, it has to be taken into account at both plates. If

we consider the energy-accommodation coefficients ag; and ag;, for plates 1 and

2, calculation for the total effective energy-accommodation coefficient yields
Ar14g

aE = . (388)
ar1 + agx — ap1ae

If the energy-accommodation coefficients are equal at both plates (ag; = ar1),
then

_ap
2 — ar1 '

ag (3.89)
We will now consider the high-pressure case (viscous regime), that is, the mean
free path is small compared to the distance between the plates (I < x). In this
case, the accommodation behavior of the gas is of interest only in the immediate
vicinity of the plates or, more precisely, in a boundary layer with a thickness of
several free-path lengths. For calculation of the amount of energy transferred,
this layer is negligible. Thus, as an approximation, complete energy accommoda-
tion can be assumed.

Calculating heat transfer using the kinetic theory of gases requires taking into
account and averaging the energy transfer from one gas particle to another dur-
ing individual collisions, a tedious task. In order to understand the process quali-
tatively, we can think of the volume (thickness x) between the plates as separated
by thin sheets, arranged at a distance twice the free path I (layer model). This
yields x/(2[) layers, each with thickness 2I. The temperature difference between
the two plates of a single layer is 2(T, — T1)l/x. As in each layer the regime, by
approximation, may be considered molecular, Eq. (3.88), as derived above, may
be used. Now, the distance between the plates is equal to the thickness of the
layer, and accommodation is set to 1:

K+11T2—T1
k=1T «x

1 -
P = 2 Aplc , approximation in layer model. (3.90)
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Experimental investigations reveal that, in many cases, the conducted heat is
proportional to the area A, to the difference in temperatures 7, — T, and
inversely proportional to the distance x between the plates, formulated in the
following equation:

Ty—T,
P

P=1A (3.91)
This formulation defines the thermal conductivity 4, a property of the fluid
between the plates.

Comparing the two previous equations, one obtains for the thermal conductiv-
ity of the gas

Iplex+1
A= Z}%%, approximation in layer model. (3.92)
This equation may be rewritten by introducing the viscosity, Eq. (3.69), the
molar heat capacity, Eq. (3.82), and the mean speed, Eq. (3.43):

_K+1
)

A

ncy, approximation in layer model. (3.93)

For noble gases (isentropic exponent k = 5/3), the numerical prefactor (k + 1)/2
amounts to 4/ern — 0.15em3 = 1.33. In 1860, Maxwell determined the thermal
conductivity in a qualitative approach and found an equation of the type3.94
but, however, with a numerical prefactor of 1 instead of 4/3. With considerable
mathematical effort, a correct calculation of the macroscopic thermal conductiv-
ity of a gas from microscopic particle—particle collisions is possible. As a result,
an equation is obtained with a prefactor of 5/2 for noble gases. In 1913, Eucken
adopted this equation empirically for other gases:

_9K—5
T4

A

ney |- (3.94)

Figure 3.16 shows experimental data of thermal conductivities for a selection of
gas species.
The heat transport is then given by

_9K—5 Tz—Tl

pr ) nevA in the viscous regime. (3.95)
x

Thermal conductivity 4 is useful when describing steady-state heat transport. In
dynamic processes with variable temperature, behavior is determined by heat
transport (thermal conductivity) as well as by the ability to store heat. The ability
to store heat is proportional to the density and to the specific heat capacity. The
thermal diffusivity a is a convenient quantity to describe this type of process. It is
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Figure 3.16 Thermal conductivities of selected gas species in the viscous range versus temper-
ature. (Data taken from Ref. [3])

defined as

a=—. (3.96)

In some applications, the heat transport over the whole pressure range is
required. A rough approximation, which describes the limits of molecular and
viscous regions correctly, is the expression

1 71 + 1 (3.97a)
= J/a
P P molecular P viscous
giving
A(Ty, — T
p= 719,(_( r ;) : (3.97b)
criia TP

The heat transfer over the whole pressure range is treated exactly for two paral-
lel plates in Section 5.4.3 and for two coaxial cylinders in Section 5.4.4.
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Example 3.13

A Pirani vacuum gauge makes use of the pressure dependence of thermal
conductivity. Here, the aim is to calculate the operational data of a typical
gauge.

Typically, the pressure sensor is designed with cylinder symmetry (see Figures
13.26 and 13.27). On the axis, a thin wire is arranged, which is heated directly by
means of an electrical current. A tube at ambient temperature is placed around
the wire concentrically. Thus, a heat flux develops from the wire, through the
surrounding gas, and toward the cylinder. The transported thermal power for
this cylinder geometry can be calculated using the above equations for planar
geometries. For this, the volume between the wire and the tube is divided into
many virtual hollow cylinders with finite wall thickness, slid into one another
telescopically. The arrangement of cylinders completely fills the volume. Imagin-
ing the cylinders to be unrolled gives the previously calculated geometry of par-
allel plates.

Usually, the wire diameter is small compared to the diameter of the tube. The
gas particles therefore collide frequently with the tube but rarely with the wire.
Due to the large number of collisions with the tube, the value of the energy-
accommodation coefficient at the wall of the tube is negligible because practi-
cally all particles show a thermal energy corresponding to the temperature of
the tube, after only few collisions. In contrast, the energy accommodation at the
wire is relevant.

The length of the tube is assumed large compared to its diameter. By
determining the relations for the radii ry, r, for the wire and tube, as well as
the temperatures T, T, for the wire and tube, the thermal power trans-
ported by the gas is calculated using Eq. (3.87) as well as Eqgs. (3.48) and
(3.80) by integration:

Ti—Tyf +1
P = ag 2zrl 17_ 2Tfp in the molecular regime, (3.98)
2
P =zl [ATy) + AT2)] N = T2 in the viscous regime (3.99)
= 1 2 In(rz/n) g . .

For better understanding, the power appearing in such a gauge is now calcu-
lated numerically. Specified data: wire diameter d =10 pm, wire length 5cm, and
tube diameter 16 mm. The temperature of the wire and tube shall be 120 °C and
20 °C, respectively. The gas is air and the accommodation coefficient is 0.8. It
follows that

For p=10Pa:

393K—-293K 5+1

463ms~"-10Pa
293K 8

P=08x%x27rx5%10"°m-0.05m
=0.0015W.

(3.100)
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For p=10°Pa:

393K —-293K

P =7x0.05m[0.0322Wm~" K™! +0.0256 Wm~" K™'] x -
In(0.008 m/5 x 10™° m)

=0.12Pa.

(3.101)

Transport of heat in the viscous regime is higher than in the molecular regime
and independent of the pressure.

334
Diffusion

The motion of particles in a medium is referred to as diffusion. For example, if a
bottle of perfume is opened in a room, after a while, the scent of the perfume is
perceived at some distance. In spite of the high velocity of individual molecules,
spreading of the perfume requires a considerable amount of time. This is
because the free path of the perfume molecules in air is short (see Section 3.2.5),
and because the directions change in collisions with air molecules. Thus, the
path of a perfume molecule is a random zigzag route, and the distance between
a molecule and its place of origin only increases slowly.

Now, the diffusion of a gas (species 1) in another gas (species 2) is assessed
quantitatively. Gas 2 fills a volume homogeneously (constant particle number
density). Gas 1 is added at a certain location; thus, initially, it is distributed
inhomogeneously within the volume. Due to the inhomogeneous particle num-
ber density #n; of the added gas, the thermal motion of all gas particles leads to a
net particle flux, of species 1 directed opposite to the gradient of the number
density. To simplify matters, the particle number density is assumed to change
only in one dimension, the z-direction. Fick’s first law describes the flux jy; of
molecule species 1 through an imaginary plane at position z (Figure 3.17):

it = —Dlz%. (3.102)
This equation defines the diffusion coefficient D;; of gas 1 in gas 2.

For the low-pressure case (molecular regime), particle—particle collisions are
negligible. Here, no real diffusion occurs; instead, the system rather features
flow, which is covered in Section 4.4.

Figure 3.17 The diffusion flow is directed toward lower particle density.
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In the high-pressure case (viscous regime), it is understandable that an increase
in velocity ¢ and in the free path [ of gas particles promotes the diffusion motion
of particles. Accordingly, the qualitative behavior follows the formulation Del.
Eq. (3.55) previously described the mean free path for a single particle species.
Assuming that the particles are hard spheres with diameter d, mathematically
solving for diffusion in the model of the kinetic theory of gases yields

4 =1 +—2
Dy, VEa T 6 (3.103)

T3 (m +mo)(dy +do)

An interesting special case is self-diffusion, featuring only one type of particles,
that is, both gas species are of the same kind. Experiments aimed at investigating
this phenomenon use (e.g., radioactively) marked individual particles that are
observed while they spread. In the case of self-diffusion,

Ci=C=¢, n+ny=mn, dl = dz =d. (3104)
Using Eq. (3.104), Eq. (3.103) simplifies to

(3.105)

Introducing the mean free path / according to Eq. (3.55) and viscosity as in
Eq. (3.72), in order to eliminate the particle diameter d, finally yields

(3.106)

W
NI

2
Dy = gflll =

In 1860, Maxwell had already found a similar expression by qualitative assess-
ments, though with a prefactor only half as high. Eq. (3.103) produces values
consistent with experimental data (Table 3.5).

Table 3.5 Diffusion constants for selected gas species in air at 20 °C and 1 bar.

Gas Diffusion constant Dy, (107> m?s™") Diffusion constant D;,
species experimental values (107> m? s7") calculated values
H, 7.2 7.4

He 7.1 6.5

H,O 2.5 1.9

Ne 32 3.1

N, 2.2 2.0

0, 2.0 2.0

Ar 1.9 1.9

CO, 1.5 1.5

Kr 1.5 1.5

Xe 1.2 1.2

Calculated values were determined using Eq. (3.103).
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3.4
Real Gases

34.1
Equations of State

Section 3.1.3 introduced the equation of state for an ideal gas as a relation
between pressure, volume, and temperature. Solving for pressure yields
_VRT NkT
v ooV

In 1840, Regnault conducted precise measurements revealing that real gases
behave differently from what this equation of state describes, especially at low
temperature and for high particle number densities. We will now investigate
these deviations more precisely.

First, the deviations occurring at high particle number densities are examined.
As described earlier, the gas particles are considered small spheres with diameter
d. Thus, an individual gas particle, as well as a certain portion of gas, has an inher-
ent volume. For high particle number density, the inherent volume of a gas is not
negligibly small compared to the total volume available to the gas. Today, statistical
mechanics and computer simulations can be used to solve the problem of the
inherent volume in the hard-sphere model, yielding a modified equation of state,

_NKT 14+y+y* -y

SV oa-y
where y represents the dimensionless ratio of the total inherent volume of all gas
particles to the volume of the vessel, that is,

3
_rd N (3.109)
6 V

Vacuum technology deals with dilute gases, featuring low particle densities and,
therefore, y <« 1. Thus, the above equation of state, Eq. (3.108), may be approxi-
mated to first order in y and gives

= NkT 1 ) (3.110)
V 1-4y

We will now discuss the deviations at low temperature. The reason for the differ-
ent behavior of real gases, compared to the equation of state for an ideal gas, is that
the gas particles attract one another when they come close (before actually touching
in a collision). As a model conception, the gas particles can be thought of as being
surrounded by an attractive field of force. This type of attractive force (cohesive
force) is observed in liquids as well, and is known to create an excess pressure
(inner pressure) in small drops of liquid. As for gases, a similar effect occurs when
mutual attractive forces between particles reduce the pressure exerted on a confin-
ing wall. The value of the inner pressure (inherent pressure) is proportional to the
volume collision rate y (Eq. (3.60)) and, thus, proportional to the squared particle
number density N/V. Therefore, the appropriate correction of the equation of

state, Eq. (3.107), for the inner pressure will be proportional to (N/V)?.

(3.107)

: (3.108)
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In 1873, van der Waals formulated an equation of state, named after him, tak-
ing into account the inherent volume and inner pressure of a gas:

URT V2

=" 7 3.111
P V —vby, y2im ( )

This equation includes two empirically found parameters a,, and by,, referred to
as van der Waals constants. A comparison of the first term on the right-hand
side of Eq. (3.111), describing the inherent volume, with the right-hand side of
Eq. (3.110) shows that the parameter by, /N4 corresponds to the fourfold inher-
ent volume of a gas particle:

by = 4gd3NA. (3.112)

The parameter a,, gives the value of the inner pressure resulting from the
attractive force.

Both parameters a,,, and b, can be obtained from precise measurements of
the behavior of real gases. As experimental data show, by, is nearly temperature
independent, which is to be expected for fixed particle size, whereas a,, shows a
significant dependence on temperature (of approximately 7~V/2). This is
explained by the fact that the velocity of gas particles decreases when the tem-
perature drops (as the velocity is proportional to T%/2). Thus, the attractive force
appears over a longer period during a collision and therefore has a greater effect.

From the physical point of view, van der Waals’ approach (Eq. (3.111)) is
unfavorable since the parameter a, is assumed to be constant
(= not temperature dependent) although, in fact, it is not. A far better way of
describing the behavior of real gases is to formulate the temperature dependence
of the attractive force’s influence explicitly, as was done in the equation of state
formulated 1949 by Redlich and Kwong [4]. However, for calculation of thermo-
dynamic state variables, the involved mathematics is uncomfortable.

An alternative means of describing the behavior of a real gas is to introduce a
formal power series in density or pressure (virial series) in the equation of state.
Terminating at the first-order term and solving for pressure yields

p= g(l +B"(T)p). (3.113)

This equation introduces the so-called second virial coefficient B that is tem-
perature dependent.

We will now assume that the difference in behavior of real gas compared to
ideal gas, described by a,, by, and B”, is small, and a first-order approximation
is adequate. By comparing van der Waals’ equation, Eq. (3.111), with the virial
equation, Eq. (3.113), the relationship between the virial coefficient and van der
Waals constants is identified as
bm am
RT RT>
Table 3.6 lists experimental data for van der Waals constants as well as viscosity

B'(T) = (3.114)

and particle diameters calculated from these quantities. The diameter calculated
from by, should correspond to the diameter of the hard-sphere particle as the
attractive force between particles.



Table 3.6 Properties of selected gas species at 20 °C, sorted according to relative particle mass M,.
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Gas species M, () Am b (X107 m3 mol ™) d from by, (nm) 7 (X107 Pas) d from 5 (N m)
s
Hydrogen Hy 2.016 0.0244 26.6 0.276 8.82 0.274
Helium He 4.003 0.0034 237 0.266 19.65 0.218
Methane CHy 16.043 0.2253 42.8 0.324 11.08 0.410
Ammonia NH; 17.031 0.4170 371 0.309 10.05 0.437
Water vapor H,O 18.015 0.5464 30.5 0.289 9.7 0451
Neon Ne 20.180 0.0211 17.1 0.238 31.50 0.258
Acetylene CyH, 26.038 0.4390 51.4 0.344 10.08 0.486
Carbon monoxide cO 28.010 0.1485 39.9 0316 17.64 0.374
Nitrogen Ny 28.013 0.1390 39.1 0.314 17.59 0.374
Ethylene CyH,y 28.054 0.4471 57.1 0.356 10.15 0.493
Ethane C,Hg 30.07 0.5489 63.8 0.370 9.29 0.524
Oxygen (% 31.999 0.1360 31.8 0.293 20.39 0.359
Hydrogen chloride HCI 36.461 0.3667 40.8 0.319 14.08 0.447
Argon Ar 39.948 0.1345 322 0.294 22.3 0.363
Carbon dioxide CO, 44.010 0.3592 42.7 0.324 14.88 0.456
Dinitrogen monoxide N,O 44.013 0.3782 44.2 0.327 14.52 0.461
Propane C3Hg 44.097 0.8664 84.5 0.406 8.18 0.615
n-Butane C4Hio 58.113 1.447 122.6 0.460 7.60 0.683
Sulfur dioxide SO, 64.065 0.6714 56.4 0.355 12.97 0.536
Chlorine Cl, 70.905 0.6493 56.2 0.355 12.87 0.552
Benzole CeHe 78.114 1.800 115.4 0451 75 0.741
Krypton Kr 83.80 0.2318 39.8 0.316 25.07 0412
Xenon Xe 131.29 0.4194 51.1 0.343 22.79 0.484
Tetrachloromethane CCly 153.822 2.039 138.3 0479 11.9 0.697
Mercury Hg 200.59 0.8093 17.0 0.238 22.6 0.540

dy and by, are the van der Waals constants, and 7 is the viscosity. As indicated, the particle diameters d are calculated from by, using Egs. (3.112) and (3.75). Data taken from

Refs. [3,5,6].
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Example 3.14

According to Eq. (3.114), the virial coefficient of nitrogen at 20 °C is calculated
from van der Waals constants as

39.1x 107 m3 mol™’

B'(T) = =
8.314Jmol™" K" - 293K
0.139 Pa m® mol 2 (3.115)
T (8.314Jmol™ K=" - 293 K2
=1.61x108Pa"'—234x10%Pa"' = -0.73x 108 Pa".
For comparison, the experimental value for B” = —0.24 x 1078 Pa~" (Figure 3.18).

The large deviation between calculated (Eq. (3.115)) and experimental values is
understandable as the calculation subtracts two terms of nearly the same value.
Thus, the result strongly depends on the values of the terms, which are uncertain
due to the van der Waals constants.

As a result, reliable calculations of the gas state should use the virial equation,
Eq. (3.113), with accurate virial coefficients (Figure 3.18 and Table A.8), instead
of the van der Waals equation, Eq. (3.111).
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Figure 3.18 Second virial coefficient of selected gas species versus temperature. The lower plot
shows a magnification of the upper, with the ordinate stretched by a factor of 10.
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34.2
Particle Properties and Gas Behavior

To this point, gas particles were described as small hard spheres that attract one
another when they come close. This conception corresponds to the state of knowl-
edge at the beginning of the twentieth century. Today, structures of atoms and
molecules as well as their interactions during approach have been investigated
thoroughly [3,8,9]. Calculations take into account the microscopic properties of
individual gas particles in order to obtain the macroscopic properties of gases, as
well as substances that, in fact, are made up of many individual particles.

As is known today, an atom consists of a nearly point-particle-like nucleus and
a surrounding cloud of electrons. The density of the electron cloud is very high
near the nucleus and drops gradually with increasing distance from the nucleus.
By using quantum mechanics, the density can be calculated (Figure 3.19). A
diatomic or polyatomic molecule is made up of two or more bound atoms with
overlapping electron clouds. Thus, in contrast to a hard sphere, a gas particle
does not have a definite diameter.

In complicated molecules such as water, the electron cloud, on one hand, can
feature a permanent electrical dipole moment. On the other hand, particles in
the vicinity can shift the electron cloud of simple atoms (e.g., noble gases) rela-
tive to the nucleus and, thus, induce an electrical dipole moment.

R 5
" attractive
forces
1 -
102
» 104
108
108
1010
| 1 l | 1 1 | | 1 | | 1 |
-0.2 0 0.2 0.4 0.6 0.8
R (nm)
Figure 3.19 Model of gas particles, argon conception of electron clouds with charge dis-
taken as an example. (a) Traditional concep- tribution p (normalized to maximum value).

tion of hard spheres with diameter d, attract-  (From Ref. [7].)
ing each other at short distance R. (b) Modern
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When two gas particles approach, an electrical force develops due to the elec-
trical dipole moments, even when the particles are still far apart. This force can
be attractive or repellent, depending on the type of interacting particles and the
symmetry properties of the electron cloud as a whole. In noble gases, the force is
weakly attractive and the resulting potential energy behaves, with respect to
internuclear distance R, as a function of R~°. Thus, it drops rapidly with increas-
ing distance.

When two colliding particles approach, their outer electron clouds overlap
increasingly. The repellent electrostatic force between the electrons causes a rap-
idly increasing repellent force that finally exceeds the attractive force caused by
dipole moments. As a rough approximation, the size of a particle can be
described by defining the diameter as the internuclear distance at which the
interaction shifts from far-range attractive to low-range repellent.

We have now formulated the attractive-soft-sphere model of a gas particle and
have described the interaction force between two particles qualitatively. The
microscopic interaction force determines collision behavior, and thus, macro-
scopic gas properties.

The interaction force is a result of the change in potential interaction energy
that occurs when particle distance changes. Today, quantum mechanics provides
the means to calculate the potential energy of two particles theoretically, and
advanced experiments allow us to obtain detailed information on atomic interac-
tion in targeted collision experiments. Figure 3.20 shows the corresponding data

200
100 | —
He
0 —
o 1
< Ne {
T
0
~100 |- Ar -
Kr [
—200 |- —
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2300 | | | |
0 0.2 0.4 0.6 0.8
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Figure 3.20 Potential energy E(R) between two noble gas atoms of the same species versus
internuclear distance. The y-axis gives the energy divided by Boltzmann’s constant k in Kelvin.
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of noble gases. The energy’s zero crossing appears at an internuclear distance of
0.3—-0.4 nm, which is approximately in compliance with the particle diameter in
the hard-sphere model.

As indicated in Figure 3.20, the size of atoms increases gradually with growing
atomic number; the attractive force, however, intensifies considerably. When
complex particles collide, the interaction energy also depends on the mutual
orientation during the collision.

A relatively simple analytical function, referred to as the Lennard—jones poten-
tial, approximates the actual potential energy E(R) between two particles fairly
accurately. It contains only two parameters, the minimum energy ¢ and the par-
ticle distance ¢ at which the energy is zero (Figure 3.21):

s=se()"- ()]

The Lennard—Jjones potential has a minimum of the potential energy at a dis-
tance Ry, that is obtained by differentiating Eq. (3.116):

(3.116)

R, =26 =1.120¢. (3.117)

Figure 3.20 shows the potential energy between two noble gas atoms of the
same species. Table 3.7 lists values of adopted parameters for Lennard—jones
potentials of different gases.
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widths used in the plot. For comparison, the
inserted small plots show the potential ener-

Figure 3.21 Potential energy of two argon
atoms versus internuclear distance. In the

plotted range, the adopted 12-6-Lennard-
Jones potentials and precise potentials do not
differ any more than approximately the line

gies in the hard-sphere and in the attractive-
hard-sphere models. (From Ref. [7].)
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Table 3.7 Mass number A, minimum &, and root ¢ of the potential energy for selected gas
species.

Gas A (-) e/k (K) o(nm)
He 4.00 11 0.27
Ne 20.18 42 0.28
Ar 39.94 142 0.34
Kr 83.7 195 0.36
Xe 131.3 270 0.39
H, 2.02 107 0.28
N, 28.02 103 0.36
O, 32.00 129 0.34
CO, 44.01 246 0.38
CH, 16.04 152 0.37
CE, 88.01 152 047

Literature values for ¢ scatter considerably. The reason is that the values are often derived from
experimental data of the temperature-dependent viscosity. When adopting the values, the quality of
adoption hardly changes if a greater change in ¢ is compensated by a slight change in ¢. From Ref. [8].

A defined internuclear potential E(R) allows deriving the macroscopic values
of viscosity, thermal conductivity, diffusion, and second virial coefficient. This is
a time-consuming task as, initially, momentum and energy transfer for different
collision geometries (head-on and grazing collisions) of two gas particles, and
subsequently, the correct mean values across a large number of individual colli-
sions have to be calculated. However, the problem is solvable, as was shown first
by Chapman and Enskog in 1916.

The macroscopic quantities depend on the temperature: at elevated temperature,
gas particles have more thermal kinetic energy. The interaction force between par-
ticles then less affects their paths and they can come closer to each other in spite
of the repellent short-range force. Solving for viscosity 7, thermal conductivity 4,
self-diffusion D, and second virial coefficient B” of a monatomic gas yields

5\/'kT 1 1
n(T) = AT (T /o) (3.118)
1
NT) = 28 \[ Q<22> &T/2)’ (3.119)
3 11 1
D11(T)—16 5 CZ?Q“J)*(kT/e)’ (3.120)
B(T)= ——B*(kT/E)- (3.121)

3 kT
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Figure 3.22 Reduced collision integrals and temperatures are marked by dashed lines for
reduced second virial coefficient versus the the indicated noble gases at room tempera-
parameter kT /e (reduced temperature). Fora  ture. (From Ref. [7].)

representation of practical conditions, reduced

These equations use the reduced collision integrals Q?2* and QV* as well as
the reduced virial coefficient B*. These standardized dimensionless quantities
ultimately contain the interatomic potential via the ratio of thermal energy kT
and energy ¢ at the minimum potential. This dimensionless ratio is referred to
as reduced temperature. Assuming a Lennard—Jones potential, these quantities
can be calculated numerically (Figure 3.22).

An interpretation of the reduced collision integral Q is that a real gas behaves
just as a gas of hard spheres with O'\/S? as the effective diameter, o being the
particle distance where the Lennard—Jones potential is zero. The temperature
dependence of the reduced collision integrals Q®»" and Q)" as well as the
reduced virial coefficient B* (Figure 3.22) is understandable: at elevated tempera-
ture (k7 /e > 30), particles behave as hard spheres with a diameter slightly below
o. At even higher temperatures, during collisions, the particles approach more
and more, and thus, seem to shrink. At low temperatures (kT /silon < 1), the
mutual attraction between particles gains in importance. The effective range of
interaction forces increases to larger distances and the particle route is dis-
turbed, corresponding to a collision. Thus, toward lower temperatures, particles
seem to increase in size.

The introduction of an atomic potential allows predicting precisely different
properties of real gases fundamentally.
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Example 3.15

Calculating viscosity, thermal conductivity, self-diffusion (at 1 bar), and second
virial coefficient of argon at 20 °C, using Egs. (3.118)-(3.121).

According to Table 3.7, 6 = 0.34 X 107 m and e/k = 142 K.

As follows, the argument of the collision integrals kT /e = 293 K/142 K = 2.06.

The reduced collision integrals and the reduced virial coefficient read (data
from Figure 3.22)

Q227 (2.06) = 1.16, Q"Y' (2.06) = 1.06, and B*(2.06) = —0.6.

This calculates to

_5V2 138x 107K 293K 1 o]
T 8 394m s (034x107°m)*> " 116 (3.122)
=22x10"%Pas,
75 1 1
A=——=138x102JK" - 394ms —————— . —
1284/2 (034x10°m)* 116 (3153,
=17x103Wm™ K™,
3 m3 1 1
Dy =——=39%4ms™" . —
" 16v2 2.47x10% (0.34x10°m)’ 1.06 (3.124)

=1.7x10"m?s7",

2 0.34%x 10™° m)*
g ( X107 ) - (~0.6)
3 1.38x1073JK ' x293K (3.125)

=-12x10"8pPa".

The calculated values can be compared to experimental data:
n=223x10"°Pas,
A=173x103Wm™ K,
Dy =1.8x107m?s™,
B"=-0.74x 1078 Pa™".

Theoretical and experimental values are consistent, except for the virial
coefficient B”. The supposed reason for this deviation is that the calculated value
B" is determined directly by the reduced virial coefficient B*, which is very sensi-
tive to the abscissa kT /e, that is, to the minimum in potential ¢.
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3.5
Vapors

3.5.1
Saturation Vapor Pressure

The state of a certain amount of substance inside a vessel depends on the pre-
vailing conditions and the volume. Figure 3.23 shows a vessel whose volume can
be varied by moving a piston.

At sufficiently high pressure, only liquid (or solid) is present inside the ves-
sel. If the vessel’s volume is increased by pulling the piston upward, additional
volume is created. This volume does not remain empty. Instead, the free sur-
face of the substance releases particles due to thermal motion, thus filling the
additional volume. This process is referred to as evaporation (or sublimation)
(Figure 3.24).

We will assume that the walls of the vessel reflect the released gas particles
diffusely so that they do not stick to the wall. Thus, a particle emitted by the
surface will eventually revisit the surface after a series of collisions with other
particles or the walls. With a certain probability, it will condense here, that is,
will be reintegrated into the liquid (or solid), or may again be reflected
diffusely.

After a sufficient amount of time, a closed system establishes a steady-state
equilibrium in terms of the amount of evaporating (sublimating) and condens-
ing particles. This state is referred to as saturation, and the resulting pressure
is called saturation vapor pressure (Figure 3.23b). If the piston is fairly close to
the bottom end, the main part of the substance is in the liquid (or solid) phase

Pv=Ps

Pv="Ps

Figure 3.23 Phase transition. P piston; V volume; checkered area: liquid or solid; dotted: gas; py:
pressure in volume V; ps: saturation pressure of substance. (a) Liquid only, (b) coexisting liquid
and gas, (c) gas only.
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Figure 3.24 Phase transitions.

and only a small proportion is in gaseous condition. If the piston’s position is
further toward the top, most of the substance is gaseous and only a minor part
is in the liquid (or solid) state. The saturation vapor pressure always has the
same value, independent of the piston’s position. The liquid (or solid) sub-
stance can be interpreted as a kind of reservoir. If the piston is pulled up even
further, at some point, the reservoir will be depleted and the pressure drops
(Figure 3.23c).

Saturation vapor pressure p, depends only on the kind of substance and the
temperature. Thermodynamics provides a simple model to describe the temper-
ature dependence of saturation vapor pressure. The predominant quantity is the
energy necessary to release a particle from the liquid or solid. This energy is
given by the specific enthalpy of vaporization A#, that is, the enthalpy of vapor-
ization per unit mass. Thermodynamic considerations show that a simple func-
tion describes the dependence of saturation vapor pressure and temperature 7
as well as specific enthalpy of vaporization A/. This relationship is expressed in
the Clausius—Clapeyron equation,

dp, Ah 1

AT (3.126)
This equation introduces Av, a quantity describing the increase in specific vol-
ume (= volume/mass) for the transition from the liquid (or solid) state to the
gas phase.

The saturation vapor pressure is obtained by integrating the Clausius—Cla-
peyron equation over temperature. To simplify, we will assume the specific vol-
ume of substance in gaseous condition v = R;T/p,, and negligible (zero) in the
liquid or solid state. Furthermore, the specific enthalpy of vaporization A/ shall
be temperature independent. The (arbitrary) starting point of the integration is
the boiling point Tgp, that is, the temperature at which the saturation vapor
pressure is equal to standard pressure p, = 101 325 Pa. Integration of Eq. (3.126)
then yields
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Figure 3.25 Saturation vapor pressures of selected solvents.

A/ 11
lnl% = (TBP _T)' (3.127)

A straight line should be the result when plotting the saturation vapor pres-
sure in a diagram with a logarithmic-scale ordinate, against the inverse tempera-
ture 77! on a linear abscissa, according to this equation. This chart is named the
Arrhenius plot.

Experimental data (Figures 3.25 and 3.26), indeed, appear nearly as straight
lines across several orders of magnitude. The fact that the enthalpy of vapor-
ization is not, as assumed, constant, but drops with an increase in tempera-
ture, causes the slight bend. This is understandable as the thermal motion of
liquids and solids increases with temperature, the inner cohesion weakens,
and, thus, releasing particles (evaporation) requires less energy. At the so-
called critical point, the enthalpy of vaporization actually drops to zero.
Because the Clausius—Clapeyron equation tends to describe the strong change
in saturation vapor pressure with temperature well across many orders of
magnitude, it is used even in accurate analyses of experimental data. However,
correction values for temperature dependence are then added to the right-
hand side of the equation.
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Figure 3.26 Saturation vapor pressures of selected metals.

Example 3.16

Calculating saturation vapor pressure of water vapor at 20 °C, using Eq. (3.127).

The boiling point of water (according to the International Temperature
Scale ITS-90), is T =373.124K. The specific gas constant can be calculated
from the particle mass, R, = 461.5Jkg™' K™'. At 20°C, the specific heat of
vaporization is 2.454 MJ/kg, and drops to 2.257 MJ/kg at 100 °C. For rough
approximation, we will use the average 2.36 MJ/kg for this temperature inter-
val. With these values, we can calculate the saturation vapor pressure at
20°C, using Eq. (3.127):

e[ (11
Ps = Pn &P s \Tsp. T

2.36 x 10° Jkg™! 1 1
= 101325Pa exp J - (3.128)
4615)kg— K- \373.12K  293.15K

= 2411 Pa.

-7.31x10™
= 101325 Pa exp {51 14 K—X}

For comparison, the experimental value of the saturation vapor pressure of water

at 20°C is p; = 2338 Pa.
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Table 3.8 Vacuum evaporation of tungsten.

Temperature  Mass evaporation rate with Saturation vapor  Mean particle

(K) respect to surface area pressure (Pa) velocity (m s
(kgm=2s7")

2000 1.76 x 10712 1.33x107° 480

2400 4.26 x 107° 3.52x 107 526

2800 1.10x 107° 9.84x107* 568

3200 6.38 x 107> 6.13x1072 607

3600 1.51x 1073 1.53 644

From Ref. [6].

352

Evaporation Rate

At saturation vapor pressure, a system is in steady-state equilibrium of particles
released by the surface of a liquid or solid, and of particles impinging and con-
densing from the gas phase. Surface evaporation rate and surface condensation
rate are equal. The latter is calculated from the probability of condensation o,
and the collision rate (Eq. (3.48)):

Evaporating particles  Condensating particles

Area - Time _Area . T1_me (3.129)
_ o P
T4 T CakT

Here, n; denominates the particle number density and p, the pressure of the
saturated vapor.

The situation changes when released particles do not return because, for
example, they are pumped out, drawn away by a gas flow, or simply condensate
on the chamber walls. In these cases, the amount of liquid or solid continuously
decreases due to evaporation.

Assuming that none of the evaporating gas particles return to the surface and
condensate there, the particle loss per unit area and time is given by the surface
evaporation rate, Eq. (3.129).

From this, the mass loss per unit area and time (specific mass flow rate) is
obtained by multiplying with the particle mass mp:

Evaporating mass pCcmp 2p
Oc =O0c——.
Area - Time 4kT nc

(3.130)

Experimental data of very low vapor pressures, as for refractory metals
such as tungsten, molybdenum, and tantalum (Table 3.8), are obtained by
measuring the mass evaporation rate and subsequently calculating the satura-
tion vapor pressure using Eq. (3.130). Here, the condensation coefficient is
practically o, = 1.00.
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Example 3.17

According to Eq. (3.130), the mass loss per unit time of a tungsten wire (diameter
0.1 mm, length 100 mm) glowing in a vacuum at 3200K is

M 2 2%x6.13%x1072P
28 s Pip =X 2 X T8 104 m.01m
Time nc 7607 ms™! (3.131)
=2%x10"%kgs ' =7.2x10Ckgh™".

Since tungsten has a density of 19254kgm™3, the mass of the wire is

1.5 x 107> kg. At such high operating temperature, nearly 1% of the wire’s mass

evaporates per minute.

If the volume around the wire contains an additional gas with which the evap-
orating gas particles can collide, a portion of the particles may be reflected and
can return to the surface. This reduces the net evaporation rate. A region, mostly
saturated with evaporated particles, thus builds up in the immediate vicinity of
the wire. The ratio of the predominant partial vapor pressure here and the satu-
ration vapor pressure is referred to as the saturation ratio. For water vapor in
air, this corresponds to the relative humidity.

The reduction of evaporation rate by additional gas is used in gas-filled lamps. By
filling the bulb with a gas, the evaporation of the wire drops by several orders of
magnitude, and thus, increases lifetime. Heavy gas particles are particularly appropri-
ate. Kr (M, = 80) is more favorable than argon (M, = 40), but also more expensive.

Example 3.18

The tungsten filament in a gas-filled bulb has an operating temperature of
2870K. The bulb is filled with an Ar-N, gas mixture. The surface evaporation
rate was measured.

Pressure of filling gas 0 1x10® 5x10° 2x10* 1x10° 3x10°
86% Ar, 14% N, (Pa)

Surface mass evaporation 230 66 31 14 4.1 1.5
Rate (1078 kgm=25s7")

Vapor pressure/saturation 0 073 0.87 0.94 0.982 0.9935

vapor pressure

During evaporation, the evaporating substance loses the heat of evaporation.
Thus, if it is not heated, evaporation cools the substance. With falling tempera-
ture, the evaporation rate drops.



References

Example 3.19

Calculation of the evaporation of ethanol (ethyl alcohol, C;HsOH, M, = 46). A
container holding ethyl alcohol at 27 °C is placed in a vacuum chamber. Surface
A =100 cm?, the filling height is 10 cm, and the initial volume is 1 liter.

According to Figure 3.25, the saturation vapor pressure p, = 1 x 10* Pa. The
condensation coefficient o. = 0.024. Following Eq. (3.130), the evaporating mass
per time

M 2 2x1x10*P

A M P p =004 X 0 Ty g0 2

Time t nc 7-372ms! (3.132)
=41x103kgs™".

If this amount of ethanol vapor is to be pumped out, the pump must have a
pumping speed

RT _3kg 181Jkg™' K" - 300K
—=41%x10"—"- 7
p s 1x 10" Pa (3.133)

Volume _m
Time t
=0.022m3s' =80m3h".

The specific heat of evaporation of ethanol is 840 kJ kg™'. Thus, the thermal
power removed by evaporation is

d
P =g _840x10°Jkg~'4.1x 103 ks~ = 3.44x 10> Js~'
dt (3.134)

= 3.44 kW.

If this heat is not replaced in some way, the liquid will cool rapidly. The initial
amount of 17 has a mass of 0.79kg. For a specific heat capacity
¢ =2.43kJkg~" K7', the temperature drop per unit time

dar 1 1

—=—pP= 3.44x10°)s7 ' =1.8Ks™". (3.135
dt mc  0.79kg-2430Jkg-' K™ ( )

Without an external heating, the liquid would cool from 27 °C to 9°C in only
105, and the saturation vapor pressure would drop to 3 x 10° Pa.
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4
Gas Flow
Prof. Dr. Wolfgang Jitschin

University of Applied Sciences, Vakuumlabor, Wiesenstr. 14, 35391, Giessen, Germany

This chapter covers various types of gas flows, each developing in specific
geometry and in characteristic pressure range.

4.1
Types of Flows and Definitions

4.1.1
Characterizing Flow, Knudsen Number, and Reynolds Number

Gas flow patterns play an important role in vacuum technology. When a vessel is
evacuated, the gas that initially filled the vessel flows to the pump through tubes.
During operation of the vessel, gas released by components (desorption) or
supplied to the process flows from high-pressure to low-pressure regions.
Knowledge of flow patterns is vital for designing vacuum systems intelligently
and understanding their performance characteristics.

Flow (or flux) is a three-dimensional movement of substance. In a gas, the
thermal motion of individual gas particles, as well as macroscopic forces due to
local pressure deviations, causes flow. Pressure forces, inertial forces, and fric-
tional forces determine flow behavior. Gravity, however, is usually negligible for
gas flow. Usually, the total gas flow through a tube is of interest, but, in certain
cases, knowledge of local flow densities in an apparatus is required.

Depending on the prevailing conditions, different types of flows arise. In order
to understand flow patterns, it is favorable to consider the different types of
flows individually in their pure form. Figure 4.1 shows the types of flows that
occur in a tube of arbitrary length.

Depending on pressure and the cross dimensions of a tube, three types of
flows can be differentiated:

1) For sufficiently low pressure, the mean free path of gas particles is high, com-

pared with the cross dimensions of the tube. Any mutual particle collision

Handbook of Vacuum Technology, Second Edition. Edited by Karl Jousten.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 4.1 Flow types in tubes with circular cross section, diameter d = 1 cm, and length / as
indicated taken as an example. The gas is air at 20 °C. Inlet pressure is taken as abscissa and
the outlet pressure is assumed negligible.

hardly occurs. Each gas particle travels through the tube due to its thermal
motion, independent of other particles. However, frequent collisions with
the tube walls cause a zigzag route. On average, the paths of many individual
particles combine to form the macroscopic flow behavior. This situation is
referred to as single-particle motion or molecular flow.

2) Under high pressure, the mean free path of gas particles is much lower than
the cross dimensions of the tube. The particles experience frequent mutual
collisions, thereby exchanging momentum and energy continuously. Even a
small volume contains many frequently colliding particles. Thus, the gas
behaves as a continuum. A flow is the result of local pressure gradients. This
situation is referred to as continuum flow or viscous flow.

3) The medium-pressure range is characterized by a transition between molec-
ular and viscous flows. In this transition, collisions of gas particles with the
wall occur just about as often as mutual collisions among gas particles. This
situation is referred to as transitional flow or Knudsen flow.

Thus, for a particular type of flow to occur, two main criteria can be identified:
one criterion is the mean free path of gas particles in relation to the cross
dimensions of the tube (for circular cross sections, the diameter). The second
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criterion is the velocity of flow for given cross dimensions of the tube and inter-
nal friction of the gas. Thus, two dimensionless characteristic numbers may be
defined to describe these criteria quantitatively.

The Knudsen number Kn is the ratio of the mean free path [ of the gas parti-
cles between two particle—particle collisions and the characteristic geometrical
dimension d of the tube’s cross section (for circular tube cross sections, the
diameter):

K n:=£. (4.1)
d

As shown in Chapter 3, the mean free path can be obtained from viscosity #

(Eq. (3.72)). Thus, for practical reasons, Eq. (4.1) can be rewritten as

oo
Kn_i.pia” (4.2)
denoting that the Knudsen number is inversely proportional to the pressure. A
high Knudsen number indicates low pressure, and thus molecular flow, whereas
a low value of the Knudsen number suggests viscous flow. Transition between
the two types of flows is smooth and leads to a change in gas flow through the
tube. The limiting cases of molecular or viscous flow are approximately reached
when roughly 90% of this change in flow has established. The quantitative
investigations described below show that this assumption leads to the following

conditions:

Kn > 0.5, molecular flow,
0.5 > Kn > 0.01, transitional flow, (4.3)
Kn < 0.01, viscous flow.

We will now investigate the second criterion for the type of flow: the velocity
of flow. The velocity v of a gas flow is the mean velocity component of the gas
particles in the direction of the tube. Usually, the velocity’s mean value is given
as an average across the tube’s cross section.

In the case of molecular flow, the individual gas particles travel back and forth
between the walls of the tube with thermal velocity. A particle’s direction after
hitting the wall is (nearly) independent of its direction prior to the collision.
Thus, a zigzag route develops (Figure 4.2a). The geometry of the tube deter-
mines the resulting velocity of flow.

The situation is different in the case of viscous flow. Here, three types of flows
in a tube are differentiated. The length of the tube determines the type of flow
(Figure 4.2b—d).

1) Initially, the gas has to leave a reservoir (vessel) to reach the entrance of the
tube. Subsequently, it streams into the tube (Figure 4.2b). Here, the gas
accelerates from a quiescent state (velocity of flow equals zero) to a finite
velocity of flow. This process requires acceleration energy that is taken from
pressure energy (pressure drops) and thermal energy (temperature drops).

85



86

4 Gas Flow

/(

<

YYYYYYY

|

()

Figure 4.2 Different types of gas flows. (a) Molecular flow. (b—d) Different types of viscous

flows: gas-dynamic (intake flow), laminar, and turbulent.

Thus, as a volume element of gas travels along a path, velocity rises, and
simultaneously temperature and pressure drop. For short distances, wall fric-
tion is usually negligible. This so-called intake flow is a particular type of gas-
dynamic flow.

Now, the gas flows through the tube. The velocity of flow at the inlet is
approximately constant across the complete cross section. As the gas contin-
ues its way through the tube, the gas layers near the walls decelerate, and the
velocity of flow drops to zero in the boundary layer at the wall. The thickness
of the boundary layer increases along the way. The velocity of flow, the fric-
tion behavior of the gas, and the dimensions of the cross section determine
the type of flow that develops after a certain intake stretch. For low velocities,
all individual volume elements move in the direction of the tube. Now, the
volume elements in the center of the tube move quicker than the volume
elements at the boundary of the tube. Thus, a velocity profile develops across
the cross section of the tube (Figure 4.2c). This type of flow is referred to as
laminar flow.

If, however, flow velocity is high, frictional forces are high as well because
they are determined by flow velocity. A volume element, traveling at higher
velocity and some distance from the wall of the tube, is deflected toward the
wall by the decelerating action of the slower moving layers near the wall. The
deflecting effects increase with friction and thus velocity, whereas the inertia
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of mass, which tends to preserve the direction of flow, remains unchanged by
a change in velocity. Thus, for sufficiently high velocities, deflecting forces
dominate and the flow shows turbulences and eddies (Figure 4.2d). The
criterion for turbulences to develop is the ratio of frictional force (propor-
tional to gas viscosity ) and inertia of mass (proportional to gas density p)
for a specified velocity of flow v (cross-section average) and specified cross
section. Typically, the Reynolds number Re is used to describe this criterion:

Re="va. (4.4)
n

The quantity d characterizes the cross section of the tube. For a downpipe,
this corresponds to the diameter d.

Re < 2300, laminar flow,

Re > 4000, turbulent flow. (4.5)

41.2
Gas Flow, Throughput, and Pumping Speed

The flow rate g of a gas flowing through a duct is defined as transported gas per
time. Several approaches of describing the amount of gas yield several different
types of flow rates:

AV .
Volume flow rate : g, = in vV, [q,]=m?s"" (4.6)
Am 1
Mass flow rate : g, = 2 = [4,,] =kgs™". (4.7)
Av . -1
Molar flow rate: ¢, = ~ - [q,] = mols™". (4.8)
AN .
Particle flow rate : gy = i N, [qy]=s" (4.9)

At times, the terms rate of flow and flux rate are used synonymously when
referring to flow rate. It should be considered that the flow rate can change along
the length of the tube. For example, the volume flow rate at the end of a tube is
higher than that at the beginning because the pressure drops along the tube and,
correspondingly, the volume of the gas increases.

Furthermore, the concept of pV flow or throughput is used frequently:

pVilow: gq,, =pV, lq,v] = Pam®s™' = 10 mbar 57", (4.10)

Using the equation of state of an ideal gas (Egs. (3.18)—(3.20)),

pV =NkT = mR;T = vRT, (4.11)
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and the definition of the mean particle speed (Eq. (3.43)),

8 kT 8 8
c= o SR =2 (4.12)
T mp T T p
the different types of flows can be converted:
qu
qy = ) (4.13)
p
qu 8 qu
- =—.22 _ M 4.14
qm Rs T T 62 qlﬂ ( )
qu
=0 (4.15)
qu
Table 4.1 lists a number of common units for gas flow.
Table 4.1 Conversion of selected common units for gas flow.
Unit Conversion Definition
Pam3s7! =1 Pam3s7! pV flow of 1 Pam?s~!
mbar £ 571 =0.1 Pam?®s7! pV flow of 1 mbar # s
Torr £s7} =0.133322 Pam?s7! pV flow of 1 Torr £s7}
atmem3s™t = 0.101325 Pam?s7! pV flow of 1 atm cm? s71
lusec =0.000133322  Pam3s7! pV flow of 1 £ pmHg s+
sccm <0.0018124 Pam?s~! at 20°C Flow of standard cm® min~!
slm < 1.8124 Pam?s~! at 20°C Flow of standard # min™! = 103 sccm
mol s~! 24374 Pam?s~! at 20°C Molar flow per second

The prefix “standard” refers to gas volume under standard conditions (101 325 Pa, 0 °C).

Example 4.1

1sccm

Flowmeters often measure in “sccm” (standard cubic centimeters per minute).
1sccm means a gas flow of 1cm® min~!, referring to standard conditions
(p, = 101 325 Pa, 6, = 0°C). Conversion to pV flow at 20 °C is as follows:

101325Pax 1cm3,;  293.15K
< - X
min 273.15K

=1.8124%x 103 Pam3s™' = 1.8124 x 1072 mbar # s~ at 20 °C.

(4.17)
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Example 4.2

The permissible leakage of an air conditioner is 3 g per year. What is the pV value
(at 20°C) for the leakage? Tetrafluoroethylene R134a (CH,F-CFs), with a total
mass number of 102, is the refrigerating medium. With Eq. (4.14), it follows that

R 0.003kg  8.314Jmol™" K™
9v=9m " =3156%107s . 0.102kg mol"’
=227x10%Pam3s™' =227 x 10 mbar#s™". (4.18)

When a vacuum vessel is evacuated by a vacuum pump, the gas volume flow-
ing through the pump inlet per unit time (volume flow rate at the pump inlet) is
the pumping speed S of the pump:

S=Vinlet = @y it [S] =m>s™ = 1000 57" =3600m> h". (4.19)
The pV flow at the inlet of the pump is referred to as throughput Q of the pump:
0= dpV inlet: [Q]=Pam®s™' =W = 10mbar#s". (4.20)

The previous two equations indicate that pumping speed and throughput of a
vacuum pump are related according to (p is the pressure at the inlet)

Q = qu,inlet = pS (421)

For many vacuum pumps, pumping speed S is (nearly) pressure independent.
Then, throughput Q is proportional to pressure as indicated in Eq. (4.21). Espe-
cially, throughput is low at low pressure. This is a comprehensible behavior because
a volume element, at low pressure, contains less gas particles (and thus less mass).
Figure 4.3 shows the pressure-independent pumping speed S (top) and the pres-
sure-dependent throughput Q (bottom) of a pump as a function of inlet pressure.

Example 4.3

A mechanical displacement pump has a pumping speed S=360m>h™"' =
1007s™! and pumps air with a temperature of 20°C at an inlet pressure
p = 10 mbar. This calculates to

pVflow: g, =pS=10mbarx100¢s™' = 1000 mbarzs™"'. (4.22)

Throughput:  Q = g,, = 1000 mbar#s™' =100Pam?®s™' =100W.  (4.23)
_ 9pv _ 9ovM

RT ~ RT
_ 100 W x 0.029 kg mol™’
"~ 83Jmol 'K x 293K

Mass flow rate: g,
(4.24)

=0.0012kgs™".
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Figure 4.3 Pumping speed (a) and throughput (b) of a pump with a pressure-independent
pumping speed of S = 1007 s~ versus inlet pressure.

41.3
Flow Resistance and Flow Conductance

The terms flow resistance and flow conductance are exemplified by considering
a tube, connecting a vacuum chamber with a vacuum pump, as shown in
Figure 4.4.

During evacuation, gas flows from the chamber, through the tube, and to the
pump. This requires the pressure difference

Ap = Pchamber ~ Ppump inlet = Pc ~ Pin- (4.25)

The behavior of a gas flow g is analogous to that of an electrical current,
and the pressure of a gas corresponds to an electrical potential (see also
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Chamber

/ Tube

Pump

Figure 4.4 Vacuum system with pump line between vacuum chamber (pressure p.) and pump
(pressure p;, at the pump inlet).

Section 18.2.2). As an analogy to the ohmic resistance of an electrical compo-
nent, the flow resistance R and conductance C of a tube are defined as

R Pressure difference _ Ap

4.26
flux q (4.26)
1_4q

=== — 4.27
b 427)

Depending on the unit used for the flow, the quantities flow resistance and
conductance are obtained with the corresponding units. Typically, pV flow is
used, which leads to [R] =sm™ or s 77! and [C] = m® s~ or #s~L. If the parti-
cle flow rate is given, then [R] = Pas and [C] = Pa~!s7!. Unless otherwise stated,
pV flow will be used here.

For electrical conductors connected in series and parallel, the individual resist-
ances and conductances add up to the total resistance R and total conductance
C, respectively:

Series connection :

1 1 1 1 (4.28)
R=Ri+Ry+R3+ -+ and —=—+—+—+---
! > ’ an cC C C G

Parallel connection :

1 1 1 1 (4.29)
C=Ci+Cy+Cs+ -+ and —=—+—+—+ -

The validity of Eqs. (4.28) and (4.29) for gases is quite limited: an inlet flow
develops at the inlet of a two-tube-series connection or in regions where a
change occurs in the cross section. An additional flow resistance accompa-
nies this type of flow. Thus, the overall assembly determines the flow resist-
ance of a tube section. Flow resistance is higher if the tube is mounted
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directly at the vessel, as opposed to being mounted in a position beyond an
additional tube. Series connections of components will be discussed in detail
for molecular flow (Sections 4.4.7 and 4.4.8). Equation (4.29) is only applica-
ble for parallel connections if the tube inlets are separated far enough, so
that the inlet flows do not interfere.

Practical calculations of multicomponent tube assemblies subdivide the sys-
tems into individual segments, according to geometrical dimensions and types of
flow. Nonstationary gas flow can be treated analogously to an electrical current
as well: the tube volume corresponds to the capacity of a capacitor in the same
way as the inertia of the flowing gas mass corresponds to the inductance of a coil.

414
Effective Pumping Speed of a Vacuum Pump

We will consider a vacuum pump, attached to a vessel via a long tube (Figure 4.4),
and will investigate the influence of the connecting tube on the pumping action.

For the (quasi-)stationary case, gas flow (given as, e.g., particle flow) is con-
stant; that is, particle flows at the inlet and outlet of the pump are the same. The
temperature of the gas can change due to the flow in the connecting tube
(expansion), and due to the subsequent pumping process (compression). How-
ever, due to heat exchange with the environment, the change in temperature
remains moderate. As an approximation, gas temperature is assumed to be con-
stant, and thus, pV flow ¢,,, remains constant as well.

At the inlet of the connecting tube (chamber flange CF), the pressure is p,,
and at the outlet of the tube (inlet flange PF of the pump), the pressure is p,,.
Assuming constant pV flow, it follows that

Qv =PVe =P Vin- (4.30)

The volume flow rate at the inlet flange of the pump is just the pumping speed
of the pump; thus, Vi, =S. The volume flow rate at the vessel flange is the
pumping speed available for evacuating the vessel; thus, V, = Se¢ and is referred
to as effective pumping speed (net pumping speed). Using these quantities,

Eq. (4.30) can be rewritten as

Segt =%S <. (4.31)

C

The effective pumping speed Seg is lower than the pumping speed S because
P > Py, in order to maintain flow. However, due to the condition of continuity,
the throughputs are the same at the inlet and the outlet of the tube.

By rewriting Eq. (4.27), the conductance C of the tube

v _ PSS  _ PSeft

C= = =
Pc—Pin Pc—Pin Pc~ P

(4.32)
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Figure 4.5 Dependence of pump efficiency Se/S on the ratio of pumping speed S of the
pump and the conductance C of the tube.

yields the pressure ratio p_/p;,:

S
Pe _4 +2. (4.33)

Pm

The series connection of pump (pumping speed S) and tube (conductance C)
determines the effective pumping speed Scg available at the vessel:

S

1
—+— and Seff = m .

1 4.34

S sTcC (4.34)

Figure 4.5 shows a plot of Eq. (4.34). Obviously, a pumping efficiency Seg/S =
0.9 = 90% requires at least a 10-fold line conductance, compared with the
pumping speed of the pump. If the conductance is just equal to the pumping
speed, the effective pumping speed is only 50% of the pump’s pumping speed. If
the conductance is considerably below the pumping speed, the effective pump-
ing speed is determined largely by the conductance and hardly by the pumping
speed of the pump. Thus, any larger pump would not increase the effective
pumping speed significantly. Consequentially, when installations are planned,
tubes with maximum possible conductance should be selected (short tubes with
large cross sections).

4.2
Inviscid Viscous Flow and Gas Dynamics

4.2.1
Conservation Laws

We will now consider viscous flow of gas through a tube. To simplify, flow shall
be stationary (constant in time). In the stationary case, mass flow, that is, the
mass flowing through a cross section of the tube, remains constant along the
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Figure 4.6 Flow field with flow filament.

line. Thus, the product of cross-sectional area A, density p, and velocity v of gas
flow remains constant as well:

. dm = pvA = constant |, conservation of mass. (4.35)

Ta

For a short tube, interactions of the gas with the walls are often negligible; that
is, momentum exchange due to friction as well as energy transfer due to heat
exchange does not occur. Assuming this, additional conservation laws apply.
These are derived by considering a small mass element (face area A, length ds),
and by investigating its motion along the direction s of flow (Figure 4.6).

If the static pressure changes along the path, the forces on the two face areas
of the volume element are not balanced, and thus, a decelerating or accelerating
force develops that affects the mass element. The inertial force of the mass ele-
ment opposes this force. Thus, when frictional force is neglected,

d
dm <Y+ dpA = 0. (4.36)
de
Since dm = pAds, we obtain
pAs; +pA=0. (4.37)

Dividing by pA and integrating across the path from location 1 to location 2
returns

2 2
J 9ds+J Yap=o. (4.38)
p dt 1P

Solving the integrals finally gives

1 2
—(E-vH+ d =0 |, conservation of momentum. (4.39)
52 =N P




4.2 Inviscid Viscous Flow and Gas Dynamics

This is referred to as Bernoulli’s equation for gases. It describes the rela-
tionship between static pressure and the velocity of flow along the path. If,
for example, the pressure drops, then the gas accelerates and thus velocity
increases.

If energy transfer with the wall is neglected, the total energy of a flowing mass
element remains constant. This is made up of three components: pressure
energy (p dV), kinetic energy (motion with velocity of flow), and thermal energy
(random particle movement):

1
il + Emv2 + cymT = constant. (4.40)
p

Because mass is constant, dm can be canceled out, yielding

1
§+ EVZ +cyT = constant |, conservation of energy. (4.41)

The three conservation laws for mass, momentum, and energy do not yet
define flow behavior clearly. Now, two cases are discussed:

Case I: The cross-sectional area changes gradually along the line. The flowing
gas adjusts to this change. Density, velocity of flow, pressure, and temperature
alter gradually. Furthermore, no energy transfer between a mass element and its
environment shall occur, giving an isentropic change of state. This case is dis-
cussed in Section 4.2.2.

Case 2: For supersonic flow, the flow can change abruptly at a certain area
(shock surface). Density, velocity of flow, pressure, and temperature change
abruptly. Because the cross-sectional area is unchanged at the shock surface,
mass flow density j,, = pv must be constant due to conservation of mass (Eq.
(4.35)). This case is discussed in Sections 4.2.6 and 4.2.7.

422
Gradual Change of Cross-Sectional Area: Isentropic Change of State

We will examine the flow of a mass element in a tube, with negligible fric-
tion and energy transfer at the wall. The cross-sectional area A of the mass
element dm = pAds is equal to the cross section of the tube. If the cross-
sectional area gradually decreases or increases along the direction of flow,
the gas volume increases (expansion) or decreases (compression) accord-
ingly (Figure 4.7).

A volume change in a gas is accompanied by a change in temperature. With-
out heat exchange between the mass element and its environment, its entropy
will remain constant along the path. This behavior is referred to as isentropic or
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Figure 4.7 Flow through a tube with changing cross section (nozzle).

adiabatic. For this, thermodynamics derives the following relationships between
pressure, volume, temperature, and density (Poisson’s equations):

pz=<vz)—lc=(Tz)K/(K—l)=(p2>K @a2)
)21 vl Tl P1

Here, k is the isentropic exponent, that is, the ratio of the heat capacities at con-
stant pressure and constant volume. Values for « are as follows:

K= g ~ 1.667 for monatomic gases (noble gases, metal vapors such as Hg),
7 _ . . .

x =1 =1.400 for diatomic gases (e.g., nitrogen),

K= ; ~ 1.333 for buckled three-atom molecules (e.g., water vapor),

k &~ 1.1 for more complicated molecules (e.g., oil vapors).

If we use the relation between density and pressure (Eq. (4.42)) for the isen-
tropic change of state in Eq. (4.39), the integral can be solved and we obtain

- -1
g 2 [ (N, k[ ()
2 1= _ - 1. .
p k-1 1 4 k-1 1

(4.43)
We will now assume that the gas flows from a vessel, where it is nearly
motionless, into a tube. Thus, initially, velocity is negligible (v; = 0) and we find

B » 2% (iz)(l(—l)/l(
12 — e |1- ==
k=1 1
k—1)/x
1_(%)( )/ .
1

This relationship describes in which way the velocity increases, from initially
zero to v, along the path, while at the same time the pressure decreases, from
initially p, to p, (Figure 4.8). In addition, the temperature drops.

(4.44)

T K
4 k-1

C1
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Figure 4.8 Changes in selected state quantit-  opening 1 (infinite cross-sectional area) to the
ies in gas-dynamic flow of a gas with an isen-  point 2. The gradient in cross-sectional area is
tropic exponent x = 1.4 from a vessel into a adjusted so that the pressure drops linearly
nozzle, along the path from the vessel from p, at 1top, = % p; at 2.

In the extreme case, the pressure at the end of the tube is (nearly) zero; that is,
P, = 0. Here, the velocity of flow v, reaches the maximum possible value:

b, 2x _ | K
=, . /= . 4.45
¥2,max p k-1 “ 4 k-1 (4.45)

In a stationary flow, mass flow is constant along the path (Eq. (4.35)). After
rewriting using Eq. (4.36), the mass flow density j,,, that is, the ratio of mass
flow g,, and cross-sectional area A, now calculates to

D _ _9d05 _ 1

j =M= = 4.4
I A dvy dv,/dp, (4.46)

dv,/dp, can be obtained by differentiating Eq. (4.44), which yields

. L1 (P2 4 p (P
— /2 = Ay 22, 4.47
I =P1 le(ﬂl> \/; 51 w(ﬂl) ( )

This equation introduces the dimensionless flow function y, which is determined
only by the ratio of the inlet and outlet pressures of the tube (Figure 4.9):

2/k (14x)/x
-l 6]

According to Eqgs. (4.47) and (4.48), mass flow density depends only on the inlet
pressure p;, the ratio of inlet and outlet pressures, the particle velocity ¢; (at
inlet temperature), and the isentropic exponent k of the gas.
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Figure 4.9 Flow function curves calculated for gas-dynamic flow by Eq. (4.48). The thinner
drawn parts of the curves to the left do not describe real flow.

423
Critical Flow

As in the previous section, we will examine a gas, flowing out of a vessel through
a tube with gradually narrowing cross section. In the vessel (at the inlet to the
tube), the pressure is p; and the velocity is zero, v; = 0. At a distance (at the end
of the tube), the pressure is p,.

If the outlet pressure p, varies, while all other conditions (inlet pressure, p;, in
particular) remain unchanged, it follows from Eq. (4.47) that the mass flow of the
gas is proportional to the flow function w (Eq. (4.48), Figure 4.9). Thus, the fol-
lowing behavior is observed for different ranges of outlet pressure:

1) If outlet pressure is equal to inlet pressure, gas flow is zero.

2) If the outlet pressure drops with respect to the inlet pressure
(py/p; = 1t00.6), gas flow rises.

3) If the outlet pressure is lowered further, compared with inlet pressure
(p,/p; = 0.61t00.5, depending on the gas species), mass flow approaches a
maximum.

4) If the outlet pressure is reduced even more, gas flow does not increase but, in
fact, drops according to the flow function .

The formation of a maximum in mass flow is easy to understand. In pressure
range 2 (p,/p; = 1t00.6), the velocity of flow, and thus mass flow, increases
with decreasing outlet pressure p,. When the outlet pressure decreases, the vol-
ume of the gas increases. Therefore, if outlet pressure approaches the zero limit,
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the volume expands to infinity. However, for energy reasons, the velocity of flow
approaches a finite value. Thus, for low outlet pressure, mass flow approaches
zero (pressure range 4). The maximum lies between ranges 2 and 4. Section
4.2.8 discusses pressure range 4 in more detail. Now, we will investigate the
maximum in range 3.

Mass flow reaches its maximum at the so-called critical point. Correspond-
ingly, values of quantities, at this point, are referred to as critical values, denoted
by a superscripted asterisk (*). The critical point features the following values:

s 2 k/(k—1)
p_ ( " 1) , pressure ratio, (4.49)
P K
* (k+1)/(k—1)
p k(2 .
£ ) =4/= flow funct 4.50
W(pl> \/2 (K n 1> , ow function, ( )
T* 2 )
T = 1 temperature ratio, (4.51)
1 K
* 2 1/(x-1)
p_ ( " 1) , density ratio, (4.52)
1 K
T .
=Ci4/— =/Rs velocity of flow.
K +1 4- K+ K+ 1
(4.53)

From this, it follows for the mass flow density at the critical point:

ok * % 2 1/(K_l) pl 2K
Jm = PV _pl(K+1) pr k+1

B 2 2 1/(k-1) 16
B cp \k+1 T k+1

An additional, important value for gas dynamics is the speed of sound or acoustic
velocity a. For an ideal gas with temperature-independent heat capacity,

a= Pe=¢ g,( = y/kR,T, speed of sound. (4.55)
\ p

Because the gas cools during expansion, the speed of sound decreases. If the

(4.54)

temperature at the critical point is used in Eq. (4.55), the local speed of sound at
the critical point is obtained:

2T
a* = kR, T* = |/ kR, +11. (4.56)
K

Comparing velocity of flow (Eq. (4.53)) and speed of sound (Eq. (4.56)) shows
that, at the critical point, the local velocity of flow is equal to the local speed of
sound.
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Introducing the Mach number Ma is useful for a simple description of flow
velocity. Ma is defined as the ratio of local velocity of flow (Eq. (4.44)) and local
speed of sound (Eq. (4.55)):

(1-x)/x

2

Ma:K = {(5) - 1} . (4.57)
a Kk—1 1

Before reaching the critical point, the velocity of flow is less than the velocity of
sound; thus, Ma < 1. This condition is referred to as subsonic flow. At the criti-
cal point, Ma = 1. Behind the critical point, Ma > 1, and the condition is
termed supersonic flow (see Figure 4.8).

424
Choked Flow at Low Outlet Pressure

As an application example of gas-dynamic flow, we will consider flow through a
nozzle (Figure 4.10) in which the cross-sectional surface A gradually narrows
along the direction of flow, until reaching the minimum cross section Ay,. The
inlet zone is designed short in order to reduce the friction between gas and walls,
which increases with the length. In the following, friction in the inlet zone and in
the attached tube is neglected as well.

At the inlet to the nozzle (marked with subscript 1), the cross-sectional area
A; & oo, bulk velocity v; = 0, and the state quantities of the gas are p; and T;. In
the nozzle inlet, the cross-sectional area reduces to A,;, at its narrowest part
(subscript 2). The gas has the state quantities p,, T, and v,. The ratio p,/p; of
inlet and outlet pressures determines the type of flow. Three cases are
differentiated:

Case 1: Outlet pressure p, is higher than the critical pressure p*; thus,
p* < p, < p;. In this case, the gas accelerates along the path, so pressure, tem-
perature, and density drop. The velocity of flow remains below the speed of
sound and reaches the value as given by Eq. (4.44). According to Eq. (4.47), mass
flow

. 4
dm = Amin]m = Amin P 2p_ll// (i_z) = Amin—7=- g_ll// (1;_) . (458)
P 1 \/; a1 1

--------- = - - A min

p1f P2

Figure 4.10 Flow through a nozzle.
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Table 4.2 Values for calculating critical flow for selected gas species.

Quantity  Monatomic Diatomic Buckled three-atom Polyatomic
gases: noble gases, for gases, for example, gases, for
gases, metal example, water vapor example, oil
vapors nitrogen vapor

K 1.667 1.400 1.333 1.100

(k—1)/x  0.400 0.286 0.250 0.091

(k+1)/x  1.600 1.714 1.750 1.909

r'/m 0.487 0.528 0.540 0.585

/T, 0.750 0.833 0.857 0.952

P/ 0.650 0.634 0.630 0.614

v/ 0.701 0.677 0.670 0.641

w(p*/p,) 0513 0.484 0.476 0.444

Thus, g, flow (with respect to the temperature 7’1 at the outlet of the nozzle) is

mm\/iplcll//(P ) (4'59)

Case 2: Outlet pressure p, is equal to the critical pressure p*; that is, p, = p* =
% p; (Eq. (4.49)). In this case, the gas accelerates so rapidly while flowing through
the nozzle that it reaches the critical velocity, which is equal to the local speed of
sound. Mass flow and mass flow density reach a maximum at the maximum of
the flow function y(p*/p;) (Eq. (4.50), Table 4.2). Mass flow and g, flow are
calculated according to Egs. (4.58) and (4.59), respectively. Here, the flow func-
tion reaches its maximum value (p*/p,) (Eq. (4.50)).

Case 3: Outlet pressure p, is lower than the critical pressure p*; that is,
P, < p* < p;. In this case, the inlet pressure of the gas is identical to the inlet
pressure in case 2. Again, behind the narrowing of the cross section to the mini-
mum, the velocity increases to the highest possible value, that is, critical velocity.
As in case 2, mass flow reaches a maximum, which is independent of the pres-
sure at the outlet, but is determined only by the critical values in the narrowest
cross section. When the velocity of the gas reaches its maximum, the condition
is referred to as choked flow. Here, the flow behavior of the gas is no longer
influenced by the flow behavior beyond the narrowing (e.g., outlet pressure)
because in supersonic flow no effect can spread against the direction of flow.

The pressure drop from critical pressure p* at the narrowing to outlet pressure
P, occurs abruptly at the outlet of the nozzle (see Section 4.2.8).

425
Contraction of Flow into Aperture and Tube

Flow through an aperture or into a tube differs from flow through a nozzle in the
sense that apertures and tubes feature an abrupt change of cross section instead
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Nozzle Tube Aperture

Figure 4.11 Intake flow into selected components with equal inlet cross sections.

of a smooth transition. In an abrupt change, the flow is not guided. The gas vol-
ume elements, approaching from various directions, tend to conserve their direc-
tion due to their inertia. Thus, the cross section contracts (vena contracta) (see
Figure 4.11).

The flow passing through the components can be characterized by using the
equations for nozzles presented in the previous section. However, the minimum
area Apin to use then is not the geometric opening Ay but the area of the con-
tracted flow. For a sharp-edged circular aperture,

A= {0.60A0 if p, ~ p, (low drop in pressure), (4.60)

0.86A4¢ if p, < p*(choked flow).

426
Examples of Nozzle Flow

Often in practice, the gas to consider is air. Figure 4.12 shows the conductances of
nozzles and apertures with circular cross sections for choked flow of air at 20 °C.
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Figure 4.12 Flow conductances of nozzles and apertures with circular cross section (diameter
d) for choked flow of air at 20 °C.
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Figure 4.14 Evacuating a chamber through a nozzle.

We will now calculate two practical examples of gas-dynamic flow: first, vent-
ing a vacuum chamber through a nozzle (Figure 4.13), and second, evacuating a
vacuum chamber through a nozzle (Figure 4.14).

In both cases, the ratio p,/p; of the pressures at opposite ends of the nozzle
plays a significant role. If this ratio is below the critical value (0.53 for air, see
Table 4.2), then gas flow through the nozzle is determined only by the inlet pres-
sure and is independent of the pressure at the outlet. However, if the pressure
ratio p,/p, is greater, the flow is determined by the pressure ratio: as the pres-
sure ratio increases, flow drops and finally reaches zero for a pressure ratio of 1.

Example 4.4

Flow of air through a nozzle into an evacuated vessel (Figure 4.13).

This situation arises, for example, if the chamber is vented. The nozzle shall be
circular with diameter d = 2 mm. The ambient air has a pressure of 1000 mbar
and a temperature of 20 °C. Using Table 4.2, we find

Critical pressure :  p* = 0.528 x 1000 mbar = 528 mbar.

Critical velocity of flow : v* =0.677x463ms™' =313ms™".

Critical temperature :  T* =0.833 x 293 K = 244K, thatis, —29°C.
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Initially, the pressure in the chamber is below critical pressure, leading to
choked flow. Figure 4.12 is used to determine the conductance, C =0.62¢s7',
and thus, for an inlet pressure of p, =1000mbar, a pV flow of p,C=
620 mbar # s~ is obtained. In addition, the gas flow can be calculated. According
to Table 4.2, the flow function y reaches the critical value 0.484. Thus, the airflow

into the chamber amounts to

Critical mass flow (Eq. (4.58)) : g, =0.74gs™".
Critical pV flow (Eq. (4.59)) : g, = 623 mbar £s.7"

A problem that can occur in practice during venting through a nozzle is that
ice may cover the nozzle due to the humidity of the air. Air, when traveling
through the nozzle, cools to —29°C, and then, the saturation vapor pressure of
water/ice is only 0.47 mbar. Calculating back the isentropic expansion, this value
corresponds to a water vapor pressure for the air inflow of 0.87 mbar at 20 °C. If
the partial pressure of the water vapor is above this value, the vapor condenses
to ice when cooling in the nozzle. After all, ambient air, typically, has a relative
humidity of 50%, and thus a partial pressure of water vapor of 11.7 mbar.

After awhile, the pressure in the chamber is above the critical pressure. We will
assume the pressure in the chamber to be p. = 800 mbar. The pressure ratio at
the nozzle then amounts to p,/p; = 0.8. Considering Figure 4.9, the flow func-
tion reads y ~ 0.40. Solving according to Eq. (4.48) yields the accurate value of
yw = 0.396. As the maximum value was y = 0.484, mass flow is now 82% of the

maximum mass flow (g}, = 0.74 g s™"); thus, g,, = 0.61gs™".

Example 4.5

Nozzle in the inlet line of a pump (Figure 4.14).

A pump (pumping speed S) is used to evacuate a chamber (Figure 4.14) through
a tube with a large cross section. A nozzle placed inside the tube acts as flow
resistance and affects the flow rate as well as the pressure ratio. At chamber
pressure p. and pump inlet pressure p;,, Eq. (4.31) gives the effective pumping
speed S, available at the chamber:

pin
Sce=—5. 4.61
b s
For the following investigations, the critical pumping speed S* is introduced.
This is the maximum pumping speed, obtained when the pump is powerful
enough to keep the pressure p;, sufficiently low to produce choked flow in the
nozzle with critical gas flow gy, through the nozzle. For this situation,

qpv(nozzle) _pS

[ oL AR S 4.62
G (PUMP let) ~ pyS 462
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Figure 4.15 Nomogram for determining the gas flow through a nozzle for inviscid flow

of a diatomic gas (k = 1.4). The straight lines represent Eq. (4.63). The bended curve
represents Eq. (4.59), that is, gp(p2/p1) normalized to g\ (p./p™).

and thus,
ﬁzfﬁ/qpv(pc/pin) (4.63)
S Pc CI;;v

The functional dependence between the gas flow through the nozzle and the
pressure ratio is complicated (Eq. (4.59)), so a nomogram is useful for practical
calculations (Figure 4.15).

For the following calculation, we need to know the critical pumping speed

. a T *
S = pLV = Amin \/;C1V/(%> . (4~64)
C 1

Let us give an example. If the diameter of the nozzle dy,n, = 1 cm, the critical
pumping speed for air at 20 °C calculates to

§* =%(o.o1 m)z\/§463ms’1 x0.484=1567¢s"". (4.65)

If the pump has a pumping speed S =72m3h™" =20 ¢ 57", this is just above the
critical pumping speed S* of the nozzle because S*/S = 0.78. The straight line
through the origin of the nomogram (Figure 4.15) corresponding to this value
crosses the curve at an abscissa value p;,/p. = 0.72. Following Eq. (4.61), an
effective pumping speed S =0.72x20¢s™' =14.4/s7" is available at the
chamber, that is, 72% of the pumping speed of the pump.

If a pump is used, featuring half of the pumping speed assumed above, that is,
$=36m>h' =10¢ 5", the corresponding quantities calculate to 5*/S =1.56
and p;,/p. =0.9. At the chamber, the available effective pumping speed
Sc=09x%x107s"" =9¢5s7", that is, 90% of the pumping speed of the pump.
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If the pump has twice the pumping speed of the value assumed initially, that
is, S=144m>h™" =40¢ 5", then the ratio of critical pumping speed of the noz-
zle and pumping speed of the pump is $*/S = 0.39. Thus, the pressure ratio
Pin/Pc < 0.523, and accordingly, flow is choked. The gas flow reaches its maxi-
mum value, determined by the nozzle. The pumping speed available at the
chamber is equal to the critical pumping speed S* = 15.6 £s~', and even a more
powerful pump cannot increase it.

It should be mentioned that the above calculations apply only to viscous flow,
that is, to a Knudsen number Kn = 7/d below 1072, In the example, this condition
prevails down to a chamber pressure p of approximately 0.65 mbar.

427
Straight and Oblique Compression Shocks

We will now consider stationary flow through a tube. The velocity of flow shall
be greater than or equal to the speed of sound. Supersonic velocities can occur,
for example, in the outlet of a Laval nozzle (Section 4.2.8). Then, changes at a
certain point have no backward effect on successive gas flow.

In this type of flow, it may happen that flow suddenly changes, for example,
due to a minor disturbance: at the shock front, the state variables such as veloc-
ity of flow, density, temperature, and pressure change abruptly. Thus, the super-
sonic flow changes to subsonic flow. Density then rises abruptly, and the effect is
termed a compression shock, or simply, shock.

First, we will investigate the straight or perpendicular shock. In order to calcu-
late the state variables for the shock, we will again use the conservation laws for
mass, momentum, and energy introduced in Section 4.2.1 (Egs. (4.35), (4.39),
and (4.41)). In the shock, the cross-sectional area A in Eq. (4.35) (conservation
of mass) remains unchanged; however, the quantities v, p, and p in Eq. (4.59)
(conservation of momentum) change abruptly. Thus, the conservation laws can
be formulated as

pv = constant, conservation of mass, (4.66a)
p+pv? = constant, conservation of momentum, (4.66b)
p 1, .

—+ Ev + ¢y T = constant, conservation of energy. (4.66¢)

Calculating the values of state variables behind the shock requires assumptions
regarding temperature behavior T'. For the isentropic flow in Section 4.2.2, the
temperature was obtained using Poisson’s equations (Eq. (4.42)). For the shock
considered here, the term ¢ T is calculated from the characteristics of an ideal gas:

R,T =

4.67
k—1 Kk—1 ( )

C\/T=

—
< I
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Thus, by putting in Eq. (4.67), the temperature is eliminated from the conserva-
tion laws. Furthermore, when rewriting the three conservation laws (Egs.
(4.66a)—(4.66¢)) for the gas state in front of and behind the shock, the flow
velocities v; (in front of the shock) and v, (behind the shock) can be eliminated
as well. The result describes the relationship between the ratio p,/p, of the pres-
sures in front of and behind the shock on the one hand and the density ratio
po/p1 on the other hand. This relation is referred to as the Hugoniot equation:

Py _ &+ 1ps/p1) = (= 1)
P+ 1) = (k= Dpa/py)

Figure 4.16 shows a plot of the Hugoniot curve (Eq. (4.68)) for an abrupt com-
pression shock, and, for comparison, includes a corresponding plot for a gradual
isentropic change of state, Poisson’s equation (Eq. (4.42)).

The Hugoniot curve has a number of interesting characteristics. Density p,
behind the shock can reach a maximum value (x + 1)/(x — 1)-fold of p; in front
of the shock as, for this, pressure would approach infinity. However, Poisson’s
equation does not show such a limit. At p,/p; =1, not only both curves have
the same ordinate value, but their first and second derivatives also correspond.
Thus, for low compression in the shock, that is, p,/p; &~ 1, Poisson’s curve repre-
sents an acceptable approximation for the Hugoniot curve. The deviation of the
Hugoniot curve from Poisson’s isentropic curve indicates a change in entropy
caused by the shock.

(4.68)
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Figure 4.16 Hugoniot curve, Eq. (4.68), and Poisson curve (isentropic), Eq. 4.42, for k = 1.4, that
is,(k+1)/(k—1)=6.
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Figure 4.17 Oblique compression shock. The velocities of flow in front of and behind the shock
front are resolved into components perpendicular and parallel to the shock surface.

Due to the second law of thermodynamics, the entropy of the gas cannot drop
while it passes through the shock surface. Thus, the only branch of the Hugoniot
curve with physical significance lies above Poisson’s curve (Figure 4.16). This
branch describes a compression shock (increase of mass density). A diluting
shock (drop of mass density) is impossible. Compression of gas flow can occur
in a discontinuous shock, with a rise in entropy following the Hugoniot equation,
as well as, gradually, with conservation of entropy (isentropic) according to Pois-
son’s equation. In contrast, dilution always happens gradually and isentropically.

In technical compressors, for example, vapor-jet pumps or diffusion pumps,
compression occurs in one or more compression shocks until the medium is at
rest (v = 0). Behind the shock, the pressure rises to static pressure p,, the maxi-
mum possible compression pressure of the pump. The pressure ratio p,/p; =
Do/ P, increases until it reaches the static pressure ratio.

We will now investigate the oblique compression shock. The previous consider-
ations for the straight shock can be applied to the oblique shock. This requires
separating the vector components of the flow velocity, in front of and behind the
shock, into the components parallel and perpendicular to the shock surface (see
Figure 4.17).

The equations derived above may be used if we substitute

vbyvy,

Maby Masin 6, (4.69)

in which 0 is the angle between the direction of flow and the surface of the com-
pression shock.

As Ma > 1 is one necessary condition for a straight shock, and Ma is replaced
by Ma sin 6 in the oblique shock, the corresponding condition for an oblique
shock reads Ma > Masin 6 > 1. Thus, the angle of the shock surface cannot be
lower than the Mach angle a, defined by sin @ = 1/Ma. The angle 6 represents
an additional geometric controlling factor for the oblique shock, compared with
the straight shock. For small angles, the change in the values of state quantities is
low (weak shocks).

428
Laval Nozzle and Effluent Flow against Counterpressure

A Laval nozzle is a nozzle with an inlet zone of decreasing cross section and an outlet
zone of increasing cross section (Figure 4.18). The inlet zone is designed short in
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Figure 4.18 Laval nozzle. Top: cross section. Bottom: state quantities along the path (velocity of
flow, pressure, temperature, density). (After Ref. [1].)

order to minimize friction between the walls and the gas. The concept of the outlet
zone affords a compromise: the outlet zone should be short to avoid frictional loss.
This can be obtained by using a wide aperture angle. If, however, the aperture angle
is too wide, the flow, depending on its velocity, might not follow the rapidly increas-
ing cross section, and thus, undesired stall from the walls develops.

The cross section gradually decreases in the inlet zone of a Laval nozzle, down
to the narrowing (throat), and the velocity of flow increases as pressure and tem-
perature fall. In contrast, the outlet zone features different types of flow. If only
the amount of gas passing through a Laval nozzle is of interest, two cases are
differentiated:

Case 1: If the exit pressure p, is just barely below inlet pressure p;, the flow
remains subcritical; that is, across the complete nozzle, the velocity of flow is
below the critical value. After passing the nozzle throat, the gas decelerates to
the outlet while pressure and temperature rise. Without any frictional loss, the
gas condition at the outlet is equal to the inlet state. Depending on flow condi-
tions and the geometry of the nozzle, real flow can be very close to the friction-
less ideal case. In such a case, flow can be calculated very well. Thus, Laval
nozzles are used frequently for flow monitoring. Here, the static pressures at the
inlet and throat are measured and, for known cross-sectional areas, the amount
of the passing substance is calculated. Deviations from the ideal case have been
investigated thoroughly in experiments and theory, and are tabulated in DIN
1952 and ISO 5167-1.

109



110

4 Gas Flow

Case 2: If the exit pressure p, is below the critical pressure p*, the flow acceler-
ates to the speed of sound in the throat, and becomes choked. The gas flow
develops according to Egs. (4.58) and (4.59) if the cross-sectional area A, is set
to the area of the nozzle’s throat, and the critical value is used for the flow func-
tion y (Table 4.2). Here also, depending on flow conditions, real flow can be very
close to the frictionless ideal case. ISO 9300 lists the deviations from the ideal
case. Thus, for known inlet pressure and nozzle geometry, gas flow can be meas-
ured precisely.

The flow in the outlet zone of a Laval nozzle depends on nozzle geometry and
exit pressure.

Figure 4.18 shows an interesting flow condition: the gas passing through the
nozzle initially accelerates to the speed of sound at the nozzle throat. Thus,
choked flow develops and the gas flow is independent of the exit pressure. In the
outlet of the nozzle, the gas continues to accelerate to supersonic velocity while
the pressure drops further. As, however, the pressure against which the gas
escapes at the exit is not sufficiently small, a compression shock with abrupt
pressure rise develops still inside the nozzle.

A nice application example of Laval nozzles are jet pumps (Section 9.3). In
these pumps, a working fluid (or pump fluid), which can be a gas or vapor,
enters a volume referred to as mixing chamber via a Laval nozzle. The mixing
chamber contains the gas to be pumped at a certain pressure that can vary con-
siderably according to the operating state. Depending on working-fluid pressure
and mixing-chamber pressure, different operating states of the nozzle are
obtained.

Operating state 1 (Figure 4.19, left-hand image): The pressure p,, at the exit of
the nozzle is just barely below the inlet pressure. In the complete nozzle, the
pressure remains above critical pressure p*. In this case, the flow accelerates in

Pout> P* Design condition P out > Pout P out > Pout

P out = Pamb

p—>

7
\ y Pout

p* _ p* p*
Pout Pout ,
P out
Nozzle works as Compression shock Jet bursts behind nozzle
Venturi tube occurs at nozzle outlet| exit

Figure 4.19 Different operating conditions of a Laval nozzle under counterpressure. (After
Ref. [2].)
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the narrowing part of the nozzle and decelerates in the widening part. The veloc-
ity of flow remains below the speed of sound at all times.

Operating state 2 (Figure 4.19, second image): The pressure p,, at the outlet of
the nozzle is just equal to the designed exit pressure. In this case, the flow accel-
erates in the narrowing part, and reaches the critical value in the throat. Then,
the flow accelerates further in the widening part where the cross-sectional area
increases. Thus, the flow accelerates along the complete path through the nozzle,
and thus, the pressure drops continuously. The resulting exit pressure is deter-
mined by the cross-sectional area of the outlet, which is designed to produce just
the pressure in the exit volume. This is the optimal case.

Operating state 3 (Figure 4.19, third image): The pressure p, , in the exit volume
is below critical pressure p* but above the designed exit pressure p . of the noz-
zle. At the throat, the velocity of flow is equal to the speed of sound. Thus, the
flow is choked, and is independent of the exit pressure. In the outlet of the noz-
zle, the gas accelerates further and reaches supersonic flow, and thus, the pres-
sure continues to drop. As, however, the counterpressure at the outlet is
significant, a straight compression shock develops inside the Laval nozzle. Addi-
tional straight and oblique shocks can arise in the nozzle outlet and in the
emerging jet. Possibly, stalling flow may occur.

Operating state 4 (Figure 4.19, fourth image): The pressure p|,, in the outlet
volume is below critical pressure p* and below the designed outlet pressure p,
of the nozzle. After the jet leaves the nozzle, oblique shocks develop in the jet,
which expand the jet more than the extension of the nozzle geometry would
suggest. Further along the jet, compression shocks and diluting waves succeed
each other. As a result, oscillation can develop in the jet.

4.29
Flow Around a Corner (Prandtl-Meyer Flow)

The flow filament theory usually does not explain the free supersonic jet behind
a nozzle. In vacuum technology, however, calculation of supersonic-jet behavior
near the outlet of the nozzle is often sufficient. For this, the Prandtl-Meyer pro-
cedure is used. We will calculate a parallel flow, restricted by a wall at one side.
Furthermore, at the end of the wall (corner), the flow enters a region of lower
counterpressure p, compared with the pressure within the parallel flow (p;)
(Figure 4.20). Thus, the flow is deflected from its original direction and the
directions of the streamlines (velocity) now are at an angle J to the parallel flow.

The two-dimensional (plane) approach to the problem reveals that the abso-
lute value and direction of velocity v, as well as the state quantities pressure,
density, and temperature, are constant along each polar vector starting from the
corner. Furthermore, the polar vectors obviously are Mach lines; that is, they
cross the flow filaments (in the direction of the velocity) at the Mach angle a,
with Ma = 1/sin a. The angle 9 is the difference

9=A-A. (4.70)
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Figure 4.20 Supersonic flow around the corner of a wall. The polar vectors X are Mach lines on
which the state quantities p, p, T, and the deflection angle 9 = 2 — 4; are constant. The angle

a between the Mach lines and the stream lines follows Ma = 1/sin a.

Here, 4 and 4; denote a flow parameter at the considered point of the flow field
at a location past and in front of the deflection, respectively. The flow parameter

is defined by

1 k—1
A= Earccos <K - (;<—1)/x>
1- (P/Po)

(k=1)/x
1 1
+2\/zt1arccos<l<—(l<+l)[l—(50) })—Z

(4.71)

If the parallel flow in front of the bend is just critical, that is, Ma = 1, so that the
pressure ratio p/p, complies with the relation in Eq. (4.49), both arccos terms in

Eq. (4.71) are just zero, and it follows that
Lh=1=0.

(4.72)
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In this case, the deflection angle 9 is equal to the flow parameter A that, by this,
can be perceived. If the gas showing critical flow in front of the bend expands to
the pressure p = 0 behind the bend, it follows from Eq. (4.71) that the maximum
deflection angle

T
'9max=_
2 Kk—1

R+l 1} . (4.73)

For gases with « < 1.25, this angle is greater than 180°. As this is physically
impossible, the gas can only expand to a finite value of the pressure p, ;.. Equa-
tion (4.71) may be used to calculate p, ;. if A =z. Similar concepts apply to
supercritical flow.

Example 4.6

This example investigates the aperture angle of a free supersonic jet, emerging
from a nozzle to a region of low counterpressure (fourth operating condition of
Laval nozzle in the previous section). The jet shall be composed of oil vapor with
x = 1.1 and a relative particle mass of 435. At the nozzle exit, the expansion ratio
p1/pbo = 0.03, and the counterpressure p behind the nozzle corresponds to an
expansion ratio of p/p, = 0.001. Equation (4.71) yields 4; = 65° and A = 113°, so
that the deflection angle, according to Eq. (4.70), calculates to

9=1—21; =113°—65° = 48°. (4.74)
For the state variables of the gas, it follows:

* At nozzle exit (p,/p, = 0.33):

.
Ma, =28, Ma:=24, ‘=072, 2 =004
To Po
* Behind nozzle (p/p, = 0.001):
;
Ma=42 Ma* =32 ~'=053 “'=0.002.
To Po

The quantities p,, py, and T are not independent, and thus cannot be chosen
arbitrarily. Their relationship is given by the equation of state (Eq. (4.11)) and by
the vapor pressure diagram. For the oil used (x = 1.1), for example, the vapor
pressure curve suggests a boiling temperature of Ty = 520K for a boiling pres-
sure of p = 1333 Pa. Thus, the thermal velocity at the inlet (Eq. (4.12)) is

_ 8 8.314] mol™ K1 x 520 K .
Ci=14/—" =159ms™. (4.75)

z 0.435 kg mol™
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The critical velocity (Eq. (4.53)) is

8.314) mol ' K™' x 520K 2x 1.1
V= \/ Jmo =102ms}, (4.76)

0.435 kg mol ! 11+1

and the critical flow density (Eq. (4.54)) is

1333 P 2 \VUD g 11
- 2 < > =, =84kgm?sl.  (477)
T

I = 159 ms T \1.1+1 11+1

4.3
Frictional-Viscous Flow through a Tube

431
Laminar and Turbulent Flows through a Tube

This section deals with viscous flow in long tubes and covers its fundamental
phenomena. Figure 4.21 shows the various phenomena of tube flow. The phe-
nomena are investigated in the order in which they appear along the course of
the gas flow.

The inflow of the fluid into the tube with flow contraction has already been
treated in Section 4.2. In the subsequent region of the tube, boundary layers
near the wall are slowed down by friction. In nozzles and short tubes, the bound-
ary layer is so thin that the total flow is hardly influenced by friction.

The thickness of the boundary layer increases gradually along the tube and
eventually reaches considerable size. Thus, it affects the flow increasingly and,
ultimately, determines the flow considerably. Due to wall friction, a velocity dis-
tribution develops across the cross section of the tube. This velocity profile
changes gradually within the intake range until it eventually reaches its final
shape (Figure 4.22).

Wall friction decelerates the flowing fluid, and thus, momentum is no longer a
conserved quantity. Furthermore, the moving fluid’s wall interaction leads to an
exchange of thermal energy, which results in (nearly) isothermal flow. Conse-
quentially, energy also is no longer a conserved quantity.

I

Inflow Contraction Transition  Tubular flow Choked flow

Figure 4.21 Gas flow through a long tube.
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Figure 4.22 Flow pattern developing across the cross section of a tube behind inflow into the
tube.

The following investigations consider flow through a tube. We will assume a
long tube and will examine a section of the tube, far beyond the inlet of the tube,
where the final velocity profile has established.

Equations given here are true for stationary isothermal flow. In the case of
pulsating flow, flow resistance is usually higher (compare electrical analogy:
additional resistance caused by impedances).

As described in Section 4.1, flow in long tubes can be laminar as well as turbu-
lent. The Reynolds number Re is the criterion used to differentiate between the
two types of flows:

(4.4)

where p is the density of gas flow, v is the velocity of gas flow (mean value across

tube’s cross section), d is the cross section (for circular tubes, diameter), and 7 is
the dynamic viscosity of the gas.

For a tube with circular cross section (circular tube),

R { < 2300 characterizes laminar flow, 45)

> 4000 characterizes turbulent flow. ’

The Reynolds number is not appropriate for precisely characterizing the accurate
transition between the two types of flows. This is because the flow behavior is
determined by the condition of flow at the inlet into the considered stretch, and
is very sensitive to wall roughness.

Usually, flow velocity v is unknown but it can be calculated from pV flow g,

1 dV 4 q 2%
-8 _ = 4.78
v A dt ﬂd2 p ( )
Putting in the velocity of flow into the term for the Reynolds number (Eq. (4.4))

yields
_4 4

Re=—-—%=

%.Pqpv _ 32 . qu
x nd n pnd n nyedd’

(4.79)
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Thus, the condition given by Eq. (4.5) for the type of flow can be rewritten as
dpv | < 709 7¢c* for laminar flow, (4.80)

d | > 1234 5¢c? for turbulent flow. ’
In laminar flow, the individual layers slide along one another. The frictional
force is proportional to the velocity and viscosity of the flowing liquid (Newto-
nian approach). As derived elementally in textbooks on fluid mechanics, this
type of arrangement yields the following Hagen—Poiseuille equation for volumet-

ric flow:
dv. =z 1dp ,
Dl e 2 5 4.81
dt 12811dld (481)

This equation applies to fluid elements with constant volume. In gas flow, the
pressure drops along the tube, and thus, the volume increases accordingly. If the
temperature remains constant along the flow path due to heat exchange with the
walls of the tube, pV flow g,,,, however, is constant. In this case, Eq. (4.81) that
applies to a short piece of tube can be integrated over the length / of the tube,
from point 1 to point 2. Thus, pV flow

x 1d*

= "7 (p?>—p?) |, circular tube, laminar flow, 4.82
qpv 2567 1 (1 —p3) ( )

and conductance

Qv _ oz 1d
P1— P 2561 1

C= (p; +p,) |, circular tube, laminar flow.

(4.83)

For turbulent flow, a semi-empirical method is used to calculate throughput
and conductance. As above, the temperature is assumed to be constant. The fol-

lowing semi-empirical formulation describes the pressure loss dp in the tube per
length d/:

—=A—pv°. (4.84)

Here, 4 is the so-called dimensionless friction coefficient of the tube and p is the
gas density. The mean longitudinal flow velocity v is simply the ratio of volume
flow and cross-sectional area (Eq. (4.78)).

The Blasius equation is commonly used to calculate the coefficient of friction
A in a circular tube with smooth inner surface:

0.3164

j’ —
V/Re = 0,3164,4/—"01.
PV

(4.85)
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Equations (4.84) and (4.85) yield the pressure loss per distance as a function of
flow velocity. The velocity of flow can be substituted by the flow (Eq. (4.78)), and
density may be eliminated using pressure (Eq. (3.43)):

dp 031641 +/83x47 1 g
a = 2 1—9 —7[10 Pa—é q;v (4.86)

Integrating the pressure loss over the length of the tube and rearranging yields
the pV flow through a circular tube with diameter d and length /:

—6 1/7 2 _ 2 4/7
qy = 1.0154%"7 (C_> (p 1 ; p 2> for turbulent flow, (4.87)
n

and conductance

6N\ 1/7 4/7
C =1.0154%"7 <C_> (@) 4 (py _Pz)_3/7 for turbulent flow.
n

(4.88)

A tube is considered smooth if wall roughness is less than 1% of the diameter,
if the Reynolds number is not too high. In rough tubes and tubes with sharp
bends, gas flow and conductance are below the values calculated with the pre-
ceding equations.

Careful attention should be paid to the outlet pressure p, of the tube. In lami-
nar as well as turbulent flow, the pressure drops along the tube due to wall fric-
tion. Thus, at constant temperature, the volume, volume flow, and velocity of
flow increase. If the outlet pressure p, of the tube is sufficiently low, the velocity
of flow approaches a maximum, namely, the speed of sound a. At this critical
pressure p*, flow becomes choked and the throughput attains its maximum
value q,,,. The pressure at the exit of the tube cannot drop below the critical
pressure. If, however, the vessel pressure is reduced further, the emanating gas
suffers an abrupt pressure drop when escaping from the tube into the vessel.
Reducing vessel pressure below the critical pressure does not increase gas flow.
We will now calculate the critical outlet pressure p* at which chocked flow
occurs.

The maximum pV flow at a cross section A (a = speed of sound, see Eq.
(4.55)) is

q;V =p'Aa. (4.89)

Equation (4.82) specifies the pV flow through a circular tube for laminar flow,
and Eq. (4.87) for turbulent flow. For the approximation p? — p3 ~ p?, the critical
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pressure is obtained by putting in the pV flow into Eq. (4.89) and rearranging:

_d'n
" 64nla’

*

critical pressure for laminar flow, (4.90)

1 /e &p? 4/7
pr= 1.92E (—) ( 5 ll> , critical pressure for turbulent flow.
n

(4.91)

Maximum gas flows ¢, for laminar and turbulent flows through a circular
tube are calculated from Eqs. (4.82) and (4.87), respectively, if the critical pres-
sure p* is used as exit pressure p,, according to Egs. (4.90) and (4.91),
respectively.

432
Airflow through a Tube

We will now study airflow through a circular tube (diameter d) at 20 °C (Figure 4.23)
and will derive matched numeric-value equations. Numeric-value equations
will be marked with a bar to the left in order to differentiate them from
primarily used physical-quantity equations. A tube with pressures p, at the
inlet and p, at the outlet is examined. To obtain numeric-value equations,
the following properties of air will be used:

¢ Mean thermal particle speed, ¢ = 463 ms~!.

e Viscosity, = 18.2 x 107° Pas.
¢ Flow function at critical point, ¥(p*/p,) = 0.484.
e Speed of sound, 2 = 343 ms~!.

A short tube behaves just like a nozzle. Here, pV flow is given by Eq. (4.59).
Supposing outlet pressure is less than, approximately, half of the inlet pressure
(p, <1p)), choked flow develops. For this, the numeric-value equation
(4,v in mbar ¢s7!, d in cm, p; in mbar) reads

g,y =15.6 d’p,, choked nozzle airflow. (4.92)

For long tubes, it is necessary to verify whether flow is laminar or turbulent.
The criterion for this is expressed in Eq. (4.80). With the values, the numeric-

P17 P2

Figure 4.23 Flow inside a tube. Flow at the inlet is nearly inviscid, whereas the flow is viscid
inside the long tube.
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value equation is obtained (qpv in mbar #s7!, d in cm):

9pv | <277, laminar flow,
d | > 481, turbulent flow.

Equation (4.82) is used for laminar flow. With the values for air, the following
numeric-value equation is found (g, in mbar# s7!, p; and p, in mbar, d and /
in cm):

d3 2 _ 2
q‘:% = 1357 R 2192’ laminar airflow. (4.94)

Equation (4.87) is applicable to turbulent flow. With the values for air, the fol-
lowing numeric-value equation is found (g,,,, in mbar # s7!, p; and p, in mbar, d
and / in cm):

q a o7
2_,2
P;TV =136 (T” 1Y 2) , turbulent airflow. (4.95)

Finally, we will consider the critical pressure by introducing the values to Egs.
(4.90) and (4.91) (p* and p, in mbar, d and [ in cm):

d’p?

pr= 2.5%, critical pressure for laminar airflow, (4.96)
1 (dPp? 47

p =51 p (71) , critical pressure for turbulent airflow. (4.97)

For convenient practical use, the previous equations are plotted in Figures 4.24
and 4.25.
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Figure 4.24 Nomogram for obtaining the airflow (20 °C) according to the equations for laminar
airflow, Eq. (4.94), and turbulent airflow, Eq. (4.95), through a long tube with circular cross sec-
tion for fixed inlet and outlet pressures.
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Figure 4.25 Conductance C according to Eq. (4.83) divided by the mean pressure p = %(p1 +p,)
for laminar airflow (20 °C) through tubes with circular cross section of given diameters (in mm)
versus tube length [ in cm.

433
Air Inflow to a Vessel: Examples

Example 4.7

A vessel is connected to ambient air by means of a capillary tube (inside diame-
ter d =1 mm, length /=10 m). Ambient pressure p; = 1000 mbar and vessel
pressure p, = 5 mbar. The gas flow is the missing quantity.

A prompt solution is found using Figure 4.26. It contains the considered case
in the curve DN 1.0 at the right border of the figure. The annotation at the curve
indicates laminar flow, and the ordinate value specifies a pV flow close to
7 mbar s~ (Figure 4.27).

In general, a plot containing the desired solution is usually unavailable. There-
fore, we will also solve the problem by calculation using the nomogram in
Figure 4.24. First, the abscissa parameter for the nomogram is calculated
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Figure 4.26 pV flow of air (20 °C) through  length /. The gas-dynamic (choked) flow is

tubes with circular cross section at inlet calculated from Eq. (4.92), the laminar flow
pressure p; = 1000 mbar and negligible from Eq. (4.94), and the turbulent flow
outlet pressure p, < p, versus tube from Eq. (4.95).

(numeric-value equation, d and / in cm, p; and p, in mbar):

d3(p2 2= 0.1’ (1000° = 5%)=0.5 (4.98)
21 P1 7P = 557000 SR ‘

For this abscissa value, according to Figure 4.24, flow is laminar. The ordinate

and Eq. (4.94) reveal that (g, in mbar#s™', d in cm)
qu
=68 (4.99)
Thus, pV flow
v =%d=68x0.1 mbar #s™" = 6.8 mbar£s™". (4.100)

When using the nomogram, it is necessary to verify whether the entrance
effect at the tube has a significant influence on the amount of gas flow. For
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Figure 4.27 Same as Figure 4.26 but for an inlet pressure p; = 1 mbar.

choked nozzle flow, according to Eq. (4.92),

Apv = 15.6 X 0.12 X 1000 mbar £s~' = 156 mbar #s™". (4.107)

For the given opening of the tube, the flow through a nozzle (Eq. (4.101)) is
considerably higher than flow through a tube (Eq. (4.100)). Thus, the entrance
effect has practically no influence on the amount of gas flow.

Furthermore, we can examine whether choked flow develops in the tube. Fol-
lowing Eq. (4.96), the critical pressure for laminar flow is

. 0.12 x 10002
p* = 2.5mear = 25 mbar. (4.102)
The critical pressure (25 mbar) is higher than the vessel pressure (5 mbar).
Thus, choked flow in fact occurs. Here, the pressure in the outlet is 25 mbar, and
after the gas leaves the tube, it expands to vessel pressure in the vessel. There-
fore, when calculating gas flow, the pressure in the outlet must be used for p, in
Eq. (4.98), instead of the vessel pressure (see Section 4.3.1). However, because
the pressure at the outlet of the tube is low compared with the inlet, the effect

on pV flow through the tube is minute.
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Finally, we will check whether flow through the complete tube is viscous.
Equations (4.2) and (4.3) require that

_F.Ln
"4 pd
Thus, the pressure must comply with the following condition:

Kn <0.01. (4.103)

T 463ms™!' X 18.2x 107 P
p>25n =5, 22 X 4° _ 662Pa. (4.104)
d 107 m
Here, the condition reads p > 7 mbar, which is valid for the complete length of

the tube.

Example 4.8

The air in the environment of a chemical reactor is monitored continuously to
identify certain pollutants with a laser-optical detector, operating at a pressure
of a few millibars. For this, the so-called sniffing operation is used to suck ambi-
ent air (p, = 1000 mbar) into the detector via a tube (inside diameter d = 2 mm,
length /= 12m). A displacement pump with pumping speed §=18m3h~' =
5757 evacuates the detector (Figure 4.23). Missing quantity is the stationary
pressure that develops inside the detector.

In a stationary condition, the flow of air into the detector is equal to the flow
of air drawn by the pump. The airflow is usually given as pumping speed, that is,
as volume flow rate g, which is pressure dependent (see Figure 4.28).

102

10!

100 S

S, qu (¢/s)

10"

1072 i A
107! 100 10! 102 10°
P> (mbar)

Figure 4.28 Pumping speed and incoming volume flow versus detector pressure in
Example 4.8. “A” indicates the stationary operating point, and C the critical point for
laminar and turbulent flows (indicated by subscripts “I” and “t,” respectively).
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To solve the problem, it is helpful to provide the air inflow as a volume flow
rate as well. If the volumetric flow through the tube is plotted into Figure 4.28 as
a function of detector pressure, the crossing between the curves marks the miss-
ing stationary working point. As it is unknown whether the flow through the
tube is laminar or turbulent, calculation of both conditions is necessary.

a. Laminar flow of air pV flow is given by Eq. (4.94). Maximum flow occurs for low
detector pressure p5 < pj (g, in mbar 5!, p, in mbar, d and / in cm):

d* p? 0.2 (10%)?
dpv.max = 135—- = 35 :
I 2 1200 2
=90mbar#s™. (4.105)

The corresponding volume flow rate g, = Gy max/P, appears as a falling
45° diagonal in the logarithmic representation of Figure 4.28. As detector
pressure p, increases, q,, drops below the maximum value. Equation (4.94)
shows that g,,, is 1% lower for p, = 100 mbar, compared with p, = 0. If the
detector pressure p, approaches ambient pressure p,, the curve approaches
a vertical line at p, = p; = 1000 mbar asymptotically. In Figure 4.28, this part
of the curve was drawn freehand.

According to Eq. (4.96), critical detector pressure p, at which choked flow
develops is (p* and p; in mbar, d and / in cm)

2 2
p* = 2.5d7p$ = 2.5%(103)2 mbar
= 83 mbar. (4.106)

In Figure 4.28, this pressure value is marked by point C,. Thus, choked flow
develops at pressures p, < 83 mbar. However, as p? — p*? ~ p?, the effective
gas flow, according to Eq. (4.94), is practically equal to the maximum gas
flow calculated above.

The intersecting point of the curves for pumping speed S and volume flow
rate g, entering the detector through the tube indicates a stationary detec-
tor pressure p, = 26 mbar (working point A)).

b. Turbulent flow of air pV flow is calculated using Eq. (4.95). Maximum flow
occurs for low detector pressure p3 < p3 (g, in mbar#s™', p; in mbar, d

and /in cm):
d3 pz 4/7
qu,max = 136d(7‘ ?1>
0.2 10002\*’ (4.107)
= 136x0.2(12'00» 5 ) =54 mbar#s'.

The corresponding volume flow rate is plotted in Figure 4.28. According to
Eq. (4.97), the critical detector pressure p, at which choked flow develops is
(p* and p; in mbar, d and / in cm)

AN 4/7—51 1 (02 10007 4/7—51 mbar.  (4.108)
Pr==>29\T"72) ~2'02\1200 2 = ' '

The corresponding point is marked with C;.
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The intersecting point of the curves for S and g, gives a stationary detec-
tor pressure p, = 13 mbar (working point A;). Here also, choked flow devel-
ops, which has hardly any impact on the gas flow.

c. In order to assess a possible effect of the entrance flow, we will calculate the gas
flow through a nozzle of the same diameter (Eq. (4.92)) (g, in mbar £ s7!, pyin
mbar, d in cm):

oy = 15.6d” p; = 15.6 % 0.2° X 1000
=624 mbar#s”. (4.109)

The value is far above laminar or turbulent gas flow, and thus, entrance
effects can be neglected in this example.

With the Reynolds number, or the abscissa in the nomogram of
Figure 4.24, we can determine whether the flow is laminar or turbulent. The
abscissa parameter calculates to (p; and p, in mbar, d and / in cm)

& pl-p3 d p? 02° 1000°
T2 1 2 1200 2

This shows that the condition is located in the transition region between
laminar and turbulent flows where behavior can only be approximated.
Thus, the detector pressure is in the range of 13-26 mbar.

3.3. (4.110)

434
Tube at the Inlet of a Pump: Examples

A chamber with pressure p, is evacuated via a tube with length / and diameter d,
using a pump with pumping speed S. At the inlet flange of the pump, the pres-
sure is p,, (Figure 4.29). Due to flow resistance (conductance C) in the tube, the
effective pumping speed S at the chamber remains below the pumping speed S
of the pump. As shown in Section 4.1.4,

E _ p in C 1

Pn_ &~ _ - (4.111)
S p. C+S§S 1+S8/C

Chamber

— —

4

/ Tube

<—
A

pin Pump

Figure 4.29 Evacuating a vacuum chamber through a tube.

Pc
d
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The pressures p;, and p, determine the conductance C of the tube. We will now
calculate the pressure ratio p,/p;,, for the laminar and turbulent cases in a circu-
lar tube.

Assuming laminar and turbulent flows through a circular tube, conductance C
is given by Eqgs. (4.83) and (4.88), respectively. By using the formula for conduct-
ance, Eq. (4.111) can be converted so that the pressure ratio is

pe_ [, 2560l S

= + - — for laminar flow, (4.112)
Pin T Pin
e " S7 1/4
=< =,11+09741 T — for turbulent flow. (4.113)
Pin 4= py,

For air at 20°C (3 =18.2x107°Pas, ¢ =463ms™'), these two equations,
rewritten as fitted numeric-value equations, read (p, and p;, in mbar, S in
¢s7, dand [ in cm)

I s
Pe = [140.0148— - for laminar airflow, (4.114)
Pin d* P

7

1/4
% = 4|1+ 0.00036/ (dlg ) for turbulent airflow. (4.115)

in

Example 4.9

A pump with the pumping speed § = 18 m? h™' sucks in air from a chamber at a
temperature 9 = 20°C with a pressure p;, = 3 mbar, through a tube with the
diameter d = 25 mm (equal to the pump’s inlet flange) and length / = 2 m. How
high is the effective pumping speed S at the chamber flange?

First, we will determine whether the entrance flow into the tube is relevant,
that is, whether choked flow occurs. The maximum pV flow sucked by the pump
is obtained by attaching it directly to the vessel:

dov =Pin S=3mbarx 575" =15mbar£s™". (4.116)
According to Eq. (4.92), the choked aperture flow (g, in mbarZs™', p; in

mbar, d in cm) is
Gpy = 15.6d°p; = 15.6 X 2.5 X3 =293 mbar£s™". (4.117)

Flow through the pump is considerably below this maximum aperture flow. As a
result, the effect of entrance flow on the overall flow is negligible and the equa-
tions for frictional flow are applicable. We will now analyze whether the flow
is laminar or turbulent. For this, the Reynolds number is assessed according to
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Eq. (4.93). To calculate pV flow, we will use the maximum pV flow sucked by the
pump (q,y in mbar#s™", d in cm):
Qv 15
-6 4118
d 25 ( )
As this value is below 277, the flow is laminar according to Eq. (4.93). Then
Eq. (4.114) allows calculating the pressure ratio:

A 200 5
Fi:\/1+0.0148><—4~7=1.061, (4.119)
: 25 3

The effective pumping speed at the vessel is calculated with Eq. (4.111):

Png_

P g1 <18 m*h' =17.0m3h7". (4.120)
. .

Seff =

As the example shows, flow resistance is negligible in the rough vacuum range
(>1 mbar) if appropriate tubing is used. In a certain pressure range, the pumping
speed of many pumps hardly depends on the pressure. In contrast, the conductance
of tubes depends on the pressure under laminar as well as turbulent flow conditions:
flow resistance increases with falling pressure. As a result, a tube placed between
vessel and pump reduces pumping speed marginally under atmospheric pressure
but causes a significant reduction of pumping speed under low-pressure conditions.
If the tolerated loss in pumping speed of a pump, caused by the inlet tubing, is
10% (90% utilization of pump), then the ratio Se¢/S must not be lower than 0.9,
and the ratio p,/p,, not any higher than 1.11. From Egs. (4.114) and (4.115), it
follows that the maximum permissible length of the suction line (fitted numeric-
value equation, S in £s7!, p,, in mbar, / and d in cm) is
4
1> 16§ Py, for laminar airflow, i.e.,

S
p‘; <277, (@.121)

& p,.S S
< 650? [% for turbulent airflow, i.e., [% > 481.  (4.122)

Example 4.10

A displacement pump with a pumping speed S=72m3h~" is to be connected
to a vacuum vessel via an inlet tube with diameter d = 40 mm. What is the maxi-
mum length of the tube if the utilization of the pump is 90%, and the lowest
inlet pressure at the pump is (a) 700 mbar and (b) 1 mbar?

Case (a): pV flow for low inlet pressure is

dpv = PinS =700 mbar x 20 £s™" = 14000 mbar 5" (4.123)
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Thus, assessing the type of flow according to Eq. (4.93) leads to (g, in
mbar#s™', din cm)

d

14
v _ 200 = 3500 > 481. (4.124)

According to this, the flow appears to be turbulent. Equation (4.122) is
used to calculate the length, and thus,

4> ,/700 x 20

l<650><2—02 2 ~ 12800cm, i.e., Inayx=128m. (4.125)

Case (b): Calculation is analogous to case (a).
The flow is laminar and the maximum acceptable length is /. = 2 m.

435
Flow through Ducts with Noncircular Cross Sections

So far, flow conditions in tubes with circular cross sections were investigated. In
these devices, the cross section is characterized by the diameter d. If, however,
the cross section has a different shape, the hydraulic diameter dy, can be used as
a characteristic value to describe the cross section. The hydraulic diameter is

defined by

cross-sectional area of duct
dp =4 X% - . (4.126)
circumference of duct

Now, ducts with circular, ring-shaped (annular), and rectangular cross sections
are investigated (Figure 4.30).

For a circular cross section, the hydraulic diameter corresponds to the geo-
metrical diameter, that is, dy, = d. When considering an annular cross section,
the hydraulic diameter is

N /0
h= nd, + nd;

=d,—d;, annular cross section. (4.127)

a _iN

Circle Annular Rectangle

Figure 4.30 Ducts with selected cross sections.
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In a rectangular cross section (area a X b), the hydraulic diameter is

ab _ 2ab

—_— rectangular cross section. 4.128
Aa+b) a+b e ! (4-128)

h =

The Reynolds number, calculated with Eq. (4.4), helps differentiating between
laminar and turbulent flows. Here, the hydraulic diameter d}, is used for the
quantity d.

In the case of laminar flow, flow conductance values of certain tubes can be
derived elementally from the definition of viscosity 5. Section 4.3.1 introduced
the conductance of a tube with circular cross section (diameter d):

T

1 d*
C—256;’7(Pl +P2)

tube with circular cross section, laminar flow.
(4.83)

For the annular gap formed by two concentric tubes with circular cross sec-
tions (diameters d, and d;), we find that

o 1, o, @d-d)
=256 01 % "4 T udyay | B TR

tube with annular cross section, laminar flow.
(4.129)

The conductance of a narrow slot with rectangular cross section (area a X b,
with a > b) is calculated elementally as well:

1 1ab® .
24 L2 (171 +p,) |, narrow slot, laminar flow. (4.130)

This equation can be generalized to apply to an arbitrary tube with rectangular
cross section (area a X b, with a > b):

1 1 ab® 192 e n a
=%y 1 nitp) 23: an (2 Z)]

rectangular cross section, laminar flow.
(4.131)

The series converges rapidly but calculation of the terms is tedious. However,
the following equation represents a close approximation that is accurate for
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a=band a > b, and in other cases produces an error of less than 3%:

a* b’ (p, +p,)

1 1
Cr—-—-
24 n l(a?+b* +0.371ab)

, rectangular cross section,
laminar flow. (4.132)

The conductance of a tube with circular cross section under turbulent flow
conditions was already given in Section 4.3.1:

19/7 <\ p1 + P\ -3/7 ; ;
C~d hl <—) (v, —py) , circular cross section,
n ! turbulant flow.
(4.88)

The conductance Cy of a tube with noncircular cross section can be estimated
by substituting the tube with an appropriately picked circular tube, for example,
with the same hydraulic diameter, and by subsequently calculating the conduct-
ance of the latter.

43.6
Influence of Gas Species on Flow

In the previous section, equations were often written out in two different ways:
as physical-quantity equations for any type of fluid and as fitted numeric-value
equations for air at 20 °C. If equations are required for other gas species, the
equations for air can be used if appropriate scaling is taken into account. The
following properties of a gas determine the developing flow.

Viscosity 1 determines frictional behavior, and thus the velocity of flow under
frictional flow conditions. In the viscous regime, viscosity is almost pressure
independent and increases proportionally to 7%, where 0.66 < w < 1.1, accord-
ing to Table A.1 in Ref. [3].

The velocity ¢ of the thermal particle motion directly determines the velocity
of flow in gas-dynamic flow. This velocity is proportional to the square root of
the thermodynamic temperature 7" and inversely proportional to the square root
of particle mass mp.

The heat capacity of a gas enters into calculation of the isentropic exponent «,
which affects flow behavior in gas-dynamic flow: during expansion, a gas with
low heat capacity cools more rapidly than a gas with high heat capacity. Cooling
changes the gas volume and particle velocity, and thus overall flow behavior. The
dependence of flow rate and conductance from the isentropic exponent is for-
mulated in the flow function .

Table 4.3 lists the scaling behavior for different types of flows.

Under laminar flow conditions, for example, for a component of arbitrary
geometry and different gas species under equal conditions (line dimensions,
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Table 4.3 Dependence of viscous flow on the properties of the gas species.

Type of flow Scaling behavior of throughput g,y and conductance C
Gas-dynamic Proportional to ¢y,

Laminar Proportional to 1/5

Turbulent Proportional to ¢%/7 /n'/7

pressures at inlet and outlet),

n(air)
n(any gas)
If we compare the pV flow through a capillary featuring laminar flow for the
gases helium and air at 20 °C, we find

1 ‘
qpvocg and ¢, (any gas) = g, (air) (4.133)

18.2%x 10™° Pas
19.6 X 10™° Pa's

that is, pV flow for helium is 7% lower than that of air.

g,y (helium) = g, (air) = g, (air) X 0.93, (4.134)

4.4
Molecular Flow under High-Vacuum and Ultrahigh-Vacuum Conditions

441
Flow Pattern, Definitions, and Transmission Probability

Under high-vacuum and ultrahigh-vacuum conditions, the mean free path [ of
gas particles is large compared with the cross dimension d of a tube, and thus,
the Knudsen number Kn = 1/d > 0.5. This indicates that gas particles traveling
through an aperture pass the aperture without suffering mutual collisions, and
that, considering flow through a tube, an individual particle hits the walls of the
tube much more often than it hits other particles.

For calculation of molecular flow through a component (aperture, tube), the
concept of transmission probability P is useful, because the motion of large
numbers of gas particles through a component is statistical. Here, the assump-
tion is used that an approaching gas particle initially passes through the entrance
plane of the component and then travels through the component. There, the
particle makes numerous wall collisions and finally leaves the component, either
through the exit plane or through the initial entrance plane. The probability of a
gas particle, which entered through the entrance plane, leaving the component
at the exit plane is referred to as the transmission probability P. In real situa-
tions, the number of particles is always large, and thus, averages over many par-
ticles and over particle flow (= particles/time) can be taken:

{ particle flow at }

_ particle flow at transmission

- { entrance plane g, } ' { probability P }
(4.135)

exit plane g,

131



132| 4 Gas Flow

Figure 4.31 Molecular flow through a thin aperture Ap placed in between two vacuum cham-
bers Ch1 and Ch2.

First, the direction distribution of gas particles for molecular flow through a thin
aperture with opening area A, placed between two chambers, is investigated. The
size and shape of the chambers shall suggest that the velocity distribution of the
gas particles is completely isotropic (Figure 4.31).

A stream of gas particles entering from the left-hand side, and hitting the wall
on the right side of chamber Chl (Figure 4.31) at a right angle, passes through
the complete area A of the aperture. For a stream of gas particles entering at an
angle 9 to the perpendicular direction, only an area A cos d is available for pass-
ing through the aperture. Thus, considering angular distribution, the particles
leaving the aperture show a cosine distribution (Figure 4.32).

Inside chamber Chl, the pressure is p; and the particle number density is #;.
Chamber Ch2, however, shall contain perfect vacuum. Under these conditions,
the number of particles approaching the opening area A per unit time, that is,
particle flow g, is

. 1
qy =JjNA = z_LmClA' (4.136)

Here, j,, and ¢; denote the collision rate (Eq. (3.48)) and the thermal particle
velocity (Eq. (3.43)) in chamber C;, respectively.

We will now substitute the aperture with a tube of finite length. Once more,
we will investigate the angular distribution of the particles passing through. Ini-
tially, the length [ of the tube shall be short compared with its cross dimensions
(= diameter, for circular cross section) (see Figure 4.33).

All gas particles hitting the entrance plane at normal direction travel through
the tube and leave it at the exit plane. Therefore, the transmission probability for
these particles is P = 1. A certain portion of the particles passing through the
entrance plane at an angle collides with the wall of the tube and is reflected.
Experimental investigations on wall collisions have shown that, with good

Figure 4.32 Angular distribution of particles passing through a thin aperture.
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7

Chl Ch2
P pr=0,n=0
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[

7;72é%%%?37
Figure 4.33 Molecular flow through a short tube in between two chambers.

approximation, emission is diffuse for technical surfaces. Thus, a particle’s direc-
tion after being emitted by the wall is practically independent of the initial angle
of incidence and shows a cosine distribution. A particle reflected by the wall
moves in or opposite to the direction of flow with the same probability. As a
result, the particle leaves the tube either at the entrance plane or at the exit plane.

Now we will consider a tube that is longer than its cross dimensions (Figure 4.34).
Here, many of the particles colliding with the wall continue to hit the wall
and will undergo further emissions. Especially in long tubes, particles can
suffer many wall collisions.

For each individual collision, the probability of the particle to move forward or
backward, with respect to the direction of flow, is equal. If the tube is long
enough, only few particles make it to the exit plane; most of the particles suffer
many wall collisions and return to the entrance plane.

The better a particle’s direction of motion is aligned with the direction of flow,
the longer the path that a particle travels within the tube without colliding. As a
result, particles leaving the tube at the exit plane feature a direction of motion
that is mostly perpendicular to this plane. In contrast, particles returning are
practically never directed perpendicularly to the entrance plane.

Ch, Ch,
M|A Tube
p1:;*\\&& P2
I -
T 1T

Figure 4.34 Molecular flow through a long tube in between two chambers.
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B

/=0

I=5d

Figure 4.35 Molecular flow through a tube leaving the tube in forward and backward
with circular cross section. Particles reach the  directions, for selected values of the ratio of
opening from the left-hand side. The figure tube length / to diameter d of the tube.
shows the angular distribution of particles

P. Clausing (1930) conducted quantitative calculations of the angular distribu-
tion of particles emanating from a tube with circular cross section under the
assumption of diffuse wall reflection. Results are shown in Figure 4.35.

We will now introduce several terms. The particle flow moving from chamber
Ch1 to chamber Ch2 is already given in Eq. (4.136). If the pressure in chamber
C, is finite as well, an opposed particle flow develops, directed from chamber
Ch2 to chamber Chl. The net particle flow is

1 1
N = Z}’llzlAPlz - Z”QZZAPZI (4137)

if the interflowing particle streams do not interfere, which is true for molecular
flow. In the case considered here, that is, a tube with constant cross-sectional
area, the transmission probability P;5 from chamber Chl to chamber Ch2 is the
same as Py; from chamber Ch2 to chamber Chl, as suggested by symmetry.
Thus, the subscript for P can be omitted.

Furthermore, we will assume that both vessels contain the same type of gas at the
same temperature, and thus, ¢; = ¢, = ¢. Using this, the net flow through the tube is

qn = ZiAP(nl —ny), particle flow, (4.138)
dpy = Z—CLAP(p1 —p,), throughput, pV flow, (4.139)

2
q,, =—-1cAP(p; —p,), mass flow. (4.140)
T
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From this and according to the defining equation, conductance C is given by

c=—In__ v _ 4P, [C]=m’s. (4.141)
m—ny p—p, 4

Flow resistance R is just the reciprocal value of conductance C:

1 1
R=—=4c-—, [R]=sm™ (4.142)

The assembly influences the conductance of a component. If the component, as
assumed above, is arranged between two very large vessels, the gas flow into the
component shows isotropic distribution of the direction of flow. The conduct-
ance developing in this case is termed inherent conductance or intrinsic con-
ductance (DIN 28400, Part 1, and ISO 3529-1).

However, if the component is built into a tube, the particle flow at the
entrance plane of the component is directional, and the direction perpendicular
to the plane is privileged (beam formation) (see also Figure 4.35). In this case,
gas particles travel through the part more easily than under isotropic inflow.
Here, the developing conductance is termed assembly conductance or reduced
conductance.

442
Molecular Flow through an Aperture

In a thin aperture (tube of length zero), the transmission probability is P =1,
independent of the geometry of the opening (cross section). Thus, according to
Eq. (4.141), intrinsic conductance is

Cy = gA. (4.143)

As example, for air at 20 °C (particle velocity ¢ = 463 ms™!), intrinsic conduct-
ance is

Ca=11.6¢s7, for air at 20 °C, aperture area A = 1 cm?, (4.144)

Ca=9.1¢s"1, for air at 20°C, circular aperture with diameter = 1 cm.
(4.145)

Table 4.4 lists conductance values of thin circular orifices having the diameter
of standardized flanges.

In order to calculate conductance values for other gas species and different
temperatures, ¢ is taken from Table A.10, or calculated according to
Eq. (3.43). Conductance is proportional to the square root of the thermo-
dynamic temperature and inversely proportional to the square root of the
particle mass (Table 4.5):

Caxy/ 1. (4.146)
mp
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Table 4.4 Flow conductances of apertures with diameters corresponding to the clear opening

widths of standard flanges.

Nominal sizes given as DN (dia-
métre nominale) without unit
according to DIN ENISO 6708/
I1SO 3445

Real inside diameter (mm)
according to DIN 28403/ISO
2861, DIN 28404/1SO 1609

Intrinsic conductance
Cp for molecular flow
of air at 20°C (#s™)

10
16
20
25
32
40
50
63
80
100
125
160
200
250
320
400
500
630
800
1000

10
16
21
24
34
41
51
70
83
102
127
153
213
261
318
400
501
630 or 651
800
1000

9.1
23.3
40.1
524
105
153
237
446
627
947
1468
2130
4129
6199
9202
14:560
22840
38570
58240
91000

This behavior is observed not only in apertures but, generally, in the case of
molecular flow because the transmission probability P depends only on the
geometry of the component (assuming diffuse emission after collisions with

wall).

Table 4.5 Flow conductances for various gases with respect to the flow conductance of air

under molecular flow conditions

Gas Relative particle mass C(gas)/C(air)
H, 3.8

He 2.7

H,O 18 1.27

Air 29 1.00

Ar 40 0.85

CO, 44 0.81
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Example 4.11

A thin aperture with diameter d =2 mm separates two vessels (see also

Figure 4.31). The vessels contain argon at 20 °C, and pressures in the vessels p; =

0.1 Pa and p, = 0.01 Pa. Net pV flow through the aperture is the missing quantity.
The problem is solved using Eq. (4.139):

C
dpv = ZA(P1 - p7)

_394m 57!
T4
=28x103Pam3s™!' =0.028 mbar£s~'.

: %(o,oz m)2(0.1 Pa — 0.01 Pa) (4.147)

443
Molecular Flow through a Tube with Constant Cross-Sectional Area

In the previous section, we calculated the conductance C, of a thin aperture (open

area A, length / = 0). Now, we will investigate a straight tube with arbitrary cross

section and will consider the two particular cases of short and very long lengths.
The number of gas particles approaching the intake area A per unit time is

. 1 _
dna =JNA = ZLHICIA' (4.148)

We start with the case of a short tube (length small compared with cross dimen-
sions). Here, some of the gas particles that cross the inlet hit the interior surface
Ag of the tube (Figure 4.33).

Their number per time is

11 _
Ins =5 anclAS« (4.149)

The factor § in the equation takes into account that the collision rate at the inte-
rior surface of the tube is just half as high as that at the interior surface of the
vessel because particles only impact the interior surface from one half-space.
Under diffuse reflection conditions, half of the particles hitting the interior sur-
face are emitted in the backward direction and leave through the entrance plane.
Thus, the net particle flow through a thin aperture is

1 1 111 _
INa = dNna ~5INs = anclA 3% EMICIAS

As) (4.150)

The bracketed term in Eq. (4.150) corresponds to the transmission probability

A
Pgrort tube = 1 — ﬁ, short tube. (4.151)
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For long tubes, that is, the length is large compared with cross dimensions,
M. Smoluchowski (1910) derived an equation to calculate the transmission
probability:

1 +7/2
Plong tube = MJ dsJ do b* cos 0, long tube. (4.152)
s —r/2

Here, / and A are the length and cross-sectional area of the tube, respectively.
The integration over s leads along the border (circumference) of the cross-
sectional area. b(0) is the distance that a particle emitted from the wall travels
until it hits the wall the next time. 0 is the angle between the particle path b and
the differential circumference ds. Equation (4.152) is universally valid and allows
calculation of the transmission probabilities for tubes with any cross section.
Calculation of the integrals is tedious. For a rough estimate, we will assume a
circular cross section and equate path b and the (hydraulic) diameter d of the
tube. Then, integration simplifies to

1 +7/2
P ~———|ds| dod’cosé. 4.153
long tube 4l(ﬂ/4)d2 J j_”/z ( )
S
Therefore, in a long tube of arbitrary, constant cross-sectional area, the trans-
mission probability is proportional to the ratio of hydraulic diameter and length,
whereby the proportional factor depends on the geometry of the cross section.
Calculating the transmission probability for a tube with medium-sized length is
more challenging. For a rough approximation, we can suppose a series connec-
tion of an aperture and a long tube:
1 1 1 1

—~—+———~1+———, tube with arbitrary length. (4.154)
P Py P long tube P long tube R 8

This equation correctly describes the two limiting cases of a very short and a
very long tube. However, for medium-sized lengths, depending on cross-
sectional geometry, where flow develops from inlet flow (isotropic angular distri-
bution of incoming particles) to pure tube flow (particle velocities mainly in the
direction of flow), an error of 10% and more must be accepted.

Knudsen (1909), Smoluchowski (1910), Clausing (1932), and others conducted
precise calculations of flow in a tube of arbitrary length. Analytical investigation
yields integrals that are evaluated numerically. Today, numerical calculation of
the transmission probability is feasible: in the so-called Monte Carlo simulation,
a computer calculates the paths of individual gas particles entering a tube. These
are distributed statistically, and, after each collision with the wall, they reflect
statistically in different directions according to a cosine distribution. A random
number generator provides data for the statistical distribution. State-of-the-art
desktop computers can calculate the paths of numerous gas particles in a tube
(one million and more) within minutes, depending on the geometry of the
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investigated duct. The transmission probability can thus be calculated with high
statistical accuracy. Usually, analytical calculations as well as computer simula-
tions rely on the following assumptions:

e Stationary flow.

e No mutual particle collisions.

e Isotropic inflow.

¢ Diffuse angular distribution after collision with wall (cosine distribution).

Tubes with simple geometries are appropriate to verify analytical and statisti-
cal calculations of the transmission probability. Both approaches lead to the
same results. Deviations appearing in some papers are caused by miscalculations
or due to differing assumptions. Calculation of more complicated ducts (e.g.,
valves) can be carried out only by means of statistical methods.

The intrinsic conductance of a component is the product of the aperture con-
ductance of the entrance plane C, and the transmission probability P:

C = C\P. (4.155)

444
Molecular Flow through a Tube with Circular Cross Section

We will investigate the transmission probability P for a tube with circular cross
section (diameter d, length /).

For a short tube with circular cross section, the transmission probability is
obtained from Eq. (4.151):

A l
PC,short tube = 1 — 41_3 =1- 3 . (4156)

For a long tube with circular cross section, Eq. (4.152) must be solved accu-
rately. As a result,

PCA,long tube = (4.157)

W
~| X

For a tube of medium-sized length, the approximation formula in Eq. (4.154)
produces a maximum error of approximately +13% for //d =~ 2. The numerically
found results of analytical and statistical calculations can be approximated by an
analytical, cut-and-try type function. Choosing the following function, the rela-
tive error remains below 0.6%:

_ 14+4(/d)
€T 14+ 18(1/d) + 3(1/d)

tube with circular cross section, arbitrary length. (4.158)
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Figure 4.36 Characteristic flow conductances of tubes with circular cross sections and nominal
sizes (in mm) for molecular flow of air at 20 °C, calculated from Eq. (4.159).

From the transmission probability P, the intrinsic conductance is obtained by
multiplying with the aperture conductance Ca (Eq. (4.143)):
T _ o 14+ 4(1/d)

Cc=CaPc="cd ,
C T AT 6 T 18(1/d) + 31/ d)

tube with circular cross section, arbitrary length.  (4.159)

Once more, it should be noted that the probabilities of passage given here
assume isotropic inflow. This is the case if large vessels are connected to the
inlet and outlet of the tube.

Figure 4.36 shows the intrinsic conductances of tubes with circular cross sec-
tions and standardized nominal diameters, for air at 20 °C. Figure 4.37 illustrates
the transmission probabilities P of tubes with circular cross sections.

445
Molecular Flow through Tubes with Simple Cross-Sectional Geometry

Technical literature lists analytical formulas, lengthy in part, as well as extensive
data tables for the transmission probabilities in tubes with simple cross-sectional
geometry (see, e.g., Ref. [4]). For practical applications where accuracy in the
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Figure 4.37 Transmission probabilities for molecular flow in a thin gap (top curve) according to
Eq. (4.160) and in a tube with circular cross section according to Eq. (4.158) versus length.

percent range is sufficient, values are conveniently read from figures. In the
following, several simple analytical formulas as well as figures are listed.

Figures 4.36 and 4.37 show intrinsic conductances and transmission probabili-
ties, respectively, for tubes with circular cross sections.

The transmission probability for a narrow slot (height b very small compared
with width a) is approximated (error < 1%) by

_ 1+1n(0.433(1/b) +1)
- (I/b)+1

where b and / denote the height and length of the slot, respectively. The equa-
tion is plotted by the uppermost curves in Figures 4.37 and 4.38.

(4.160)
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Figure 4.38 displays the transmission probability for a tube with rectangular
cross section (or quadratic for a = b).

The transmission probability of an annular slot (clearance between two coaxial
tubes with radii r, and r;) is shown in Figure 4.39. In the special case with
ri/ro — 0, the annular slot approaches a tube with circular cross section with
d = 2r,, and in the special case r;/r, — 1 it approaches a narrow slot with b =
ro —riand a = z(ry +1;).
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Figure 4.38 Transmission probabilities in tubes with rectangular cross sections (selected aspect
ratios) for molecular flow versus length.
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Figure 4.39 Transmission probabilities in tubes with annular cross section (coaxial double tube)
with selected radii ratios for molecular flow versus length.

446
Tube Bend and Tube Elbow

Connecting ducts often contain tube bends and elbows (Figure 4.40). Such com-
ponents feature approximately the same transmission probability as a straight
tube with equal cross section and axis length.

For simple geometries, for example, a 90° bend with circular cross-section
tubes, calculations for the transmission probability by means of Monte Carlo
simulation are available (Figure 4.41).
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Figure 4.40 Axis length in a tube bend and a tube elbow.
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Figure 4.41 Transmission probabilities of 90° tube elbows with circular cross sections and
selected dimensions. As in the previous figures, the transmission probabilities apply to a
mounting position between two chambers but not to a position between tubes.

Example 4.12

Two vacuum vessels are connected via a 90° elbow consisting of a tube with nomi-
nal diameter DN 25 (d = 25 mm). The mounting dimensions of the elbow are the
common metric ones, that is, 50 mm displacement in both x- and y-directions.

Case 1: A radius elbow is used. The effective length is % of a full circle with 50 mm
radius of curvature, and thus, /=1xrc=79mm. The //d ratio is
79/25 = 3.16. Using Eq. (4.158) or Figure 4.37, the transmission probability
P =26.5%.
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Case 2: A mitered elbow is used. The effective length of the tube is the sum of
the side lengths, 100 mm. The //d ratio is 100/25 = 4. As calculated with
Eq. (4.158) or obtained from Figure 4.37, the transmission probability
P = 22.4%. The precise result of Monte Carlo simulation (Figure 4.41) in the
considered case (a/r = b/r =50/12.5 = 4) is P = 24 + 1% (reading error of
figure).

Considering conductance, the radius elbow is superior to the mitered elbow.
Better than both of these components is a large sphere with two attached short
tubes for the connections. It should be noted that the transmission probabilities
given in the example correspond to the intrinsic conductance, that is, are valid for
a component mounted directly between the two vessels where the gas particles
approach isotropically. If the components are attached via stubs, as commonly
used, other transmission probabilities result due to the developing tubular flow at
the inlet to the components. This type of arrangement is covered in Section 4.4.8.

447
Series Connection of Tube and Aperture

In practice, tubes with different cross sections are often combined in a serial
arrangement. A simple example is a series connection between two chambers,
made up of a tube (cross-sectional area A1) and an aperture (cross-sectional area
Aj) (Figure 4.42). First, we will investigate molecular flow from the left-hand
chamber Chl into the right-hand chamber Ch2.

The particle flow hitting the entrance plane A; from chamber Chl is g,,. The
transmission probability for the tube shall be P. Then, a particle flow g, P
reaches the area A, at the aperture. Here, a portion A;/A; passes through the
aperture and enters into chamber Ch2. The other portion, 1 — A;/A;, is reflected
backward, in the direction opposite to the inflow. Again, from the reflected gas
particles, a portion P reaches A; and thus finds its way back into chamber Chl
while the remaining portion 1 — P reaches A,. From this portion, a fraction (cor-
responding to the surface-area ratio A;/A;) enters into chamber Ch2 while the
rest is reflected backward just as in the first reflection. The total particle flow
leaving the aperture toward the right-hand side is the sum of the contributing
particle flows, traveling the tube once, with an extra double passage, with two

Ch1 Ch2

A A,

Figure 4.42 Two chambers connected by a series connection of a tube (cross-sectional area A;)
and an aperture (cross-sectional area A).
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extra double passages, and so on. Adding up the geometric series yields the
transmission probability P;, of the arrangement according to Figure 4.42 in the
direction oriented from surface A; to surface A,:

L 1.4, (4.161)
P P Ay ’
Analogous treatment of a flow from chamber Ch2 to chamber Chl yields the
transmission probability in the opposite direction, from 2 to 1:

1 A, 1 A
—=—"-—=—+41 4.162
P21 Al P Al ( )
By eliminating the quantity P from the previous two equations, it follows that

APy = A1 Pyy. (4.163)

The product of the area of the exit plane and the transmission probability is just
proportional to the conductance. Thus, we find that the conductance from
chamber Chl to chamber Ch2 is identical to the conductance in the opposite
direction. This relationship is universally valid for any arrangement of passive
line elements. It indicates that, under stationary conditions, the pressure among
connected chambers with the same temperature is balanced.

448
Series Connection of Components

We will consider a series connection of several components with dissimilar cross
sections and lengths. The components include tubes, apertures (tube of length
zero), inserted chambers (tube with very large diameter), and other types of
components such as bent tubes (Figure 4.43).

The net conductance cannot be obtained by treating the arrangement as a
simple series connection of the individual components. The intrinsic conduct-
ance of a component applies to the case where the component lies between two
large chambers. This quantity has two constituents: the inflow to the component
and the tubular flow through the component. If the cross section of the line at
the transition between two subsequent components remains unchanged or even

|

Figure 4.43 Series connection of four tubes with different cross-sectional areas A.
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increases, the inflow loss disappears for the succeeding component. However, if
the cross-sectional area of the line decreases at the transition from one compo-
nent to the next, inflow loss occurs to an extent determined by the drop in the
cross-sectional area. In the previous section, a descriptive example showed that,
in a series connection of components, the transmission probability depends on
the direction.

The sum of resistances due to inflow and tubular flow is a good approximation
for the intrinsic flow resistance of an individual component. In a series connec-
tion of components, the total resistance is then given by the sum of individual
resistances. However, if the cross-sectional area of the line at the intake of the
component does not decrease, the resistance due to inflow is set to zero (Oatley’s
approach). Thus, the following addition theorem is obtained for a series connec-
tion of components:

1/1 "1 /1 L1
—=—=1)=N " (==-1) + —— )81 (4.164)
Ay (Pln ) ZA:‘ (Pi > Z(Am Ai) .

i=1 i=1

where i denotes the component number, A; is the cross-sectional area of intake
to the arrangement, A; is the cross-sectional area of component i, Py, is the total
intrinsic transmission probability for the arrangement, P; is the intrinsic trans-
mission probability for component i, §;;.1 =1 if A;y1 < A; (decreasing cross-
sectional area), and §; ;41 = 0 if A;y; > A; (without reduction in cross-sectional
area).

Special case: Series connection of two components with cross-sectional areas
A; and A,, and transmission probabilities P; and P,. From Eq. (4.164), it follows
for the general case with arbitrary cross sections:

L L At ) (Aig)s (4.165)
P, P Ay \P, A h ’
Case 1: The cross-sectional areas of both tubes are the same, A; = A,. Thus,

012 =0and

L_1,. 1., (4.166)
Py, Py Py ’

Case 2: The cross-sectional area increases, A, > A;. Thus, ;5 = 0 and

1 _1 +Al(1 1> (4.167)
Py, P Ay \P» ' '

Case 3: The cross-sectional area decreases, A, < A;. Thus, ;, =1 and

1 1 A 1
1 1.4 1 . (4.168)
Py, P Ay P
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Example 4.13

Two tubes with circular cross sections, equal diameter d, and lengths /; = 2d and
|, = 3d are connected and thereby form a tube with length /;, = 5d.

With Eq. (4.158), the transmission probabilities of the two tubes are P; =
0.355 and P, = 0.274. If the transmission probability for the assembled tube
is calculated by considering a simple series connection of conductances, as in
electrical engineering, with the equation 1/P;; = 1/Py + 1/P;, the result is
P12 = 0.155. If the transmission probability is calculated with the approxima-
tion formula for vacuum ducts in Eq. (4.166), 1/P1; =1/P;+1/P, — 1, then
P, =0.183.

For the assembled tube, the effective transmission probability, according to
Eq. (4.158), is P1; = 0.190.

The given approximation formula for a series connection of flow conduct-
ances thus yields a considerably more accurate result compared with the
simple equation for serially connected electrical conductances. The reason is
that the flow at the outlet of the first tube is no longer isotropic, as it is
when it enters the first tube. In fact, it is directed forward in the tube (beam-
ing effect) and thus passes through the second tube more easily.

Example 4.14

Series connection of elements in a line.

Certain components such as valves feature a more complex geometry and their
transmission probabilities are usually unknown. Manufacturers list the intrinsic
conductance C in technical specifications from which the transmission probabil-
ity can be calculated using C = %EAP. If, furthermore, isothermal conditions are
assumed (constant thermal velocity ¢ within the line), the conductance of the
series connection can be calculated by rewriting Eq. (4.164):

1 4 "1 4 S
BLEDEL I ) (A 7 Y SELELE P 4.169
(Cln EA1) ; (Ci EAi) i p (Ai+1 Ai) H ( )

1

449
Molecular Flow through Conical Tube with Circular Cross Section (Funnel)

Figure 4.44 shows a conical tube (circular cross section) as is used, for example,
for reducing adaptors between pump flanges and vacuum lines.

If the transition in cross section is smooth, the cone can be thought of as a
series connection of short circular—cylindrical tube elements with changing
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Figure 4.44 Conical tube.

diameters. According to Eq. (4.156), the inverse transmission probability 1/Py, of
a short element of length dx is given by

i—¥~1+% (4.170)
Pge  1—(dx/2r) "~ " 2r ‘

The latter approximation is correct, since dx/2r < 1. Analogous to Eq. (4.164),
the transmission probability of the conical tube piece can be calculated by treat-
ing it as a series connection of tube elements and by integrating over the length
of the tube (rather than summing up the contributions of the tube elements).

This yields the transmission probability in the direction of increasing
diameter:

1 % 1 d
J g s ki Y (4.171)

14| =
Py, ! o Alx) 2r 4r2

and facing toward the direction of decreasing diameter,

1 A T | 1 dA r2ori4r
—=1+4| (om0 g =3 L. 4.172
Py T J (A(x) 2r  A2(x) dx) r * 4r? ( )

X2

By calculation, it is easy to verify Eq. (4.163) for a funnel; therefore, conduct-
ances for both directions of flow are the same as it has to be.

The given equations can be tested by equating the two radii of the conical
tube, which then leads to the known case of a cylindrical tube with circular cross
section. The obtained equation corresponds to the approximation formula in
Eq. (4.154). This is because both equations are based on the approach that the
transmission probability for an arbitrarily long tube can be calculated with the
approximation of inversely summing up the probabilities of passage for an entry
aperture and a very long tube. This approximation is correct for the special cases
of very short and very long tubes. However, for //d =~ 2, it produces a positive
error of 13%.
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Figure 4.45 Pump evacuating a chamber through an aperture.

44.10
Component in the Inlet Line of a Pump

At low pressures (molecular regime), pumping speed S = dV/d¢ of many vac-
uum pumps is pressure independent. Therefore, as a model conception, a pump
can be idealized as a series connection of a tube and an ideal pump with zero
inlet pressure. The tube has the same intake area as the pump and its conduct-
ance is equal to the pumping speed of the pump (C = §).

If this type of pump connects to a chamber via a component with finite con-
ductance, the effective pumping speed available at the chamber S is lower than
that of the pump (Figure 4.45). The effective pumping speed can be calculated
roughly as a series connection between the component and the tube (pump
model) according to Eq. (4.169).

Example 4.15

A turbomolecular pump with pumping speed S = 100 # s~ for air (flange diame-
ter 70 mm) is mounted directly to the vacuum flange of a chamber. The effective
pumping speed at the chamber shall be reduced to Ser = 40 s~ by insertion
of an aperture into the chamber flange. What diameter does the aperture need
to have?

Figure 4.45 shows the arrangement of chamber, aperture, and pump. Equation
(4.169), rewritten to the given case (subscript 1 for the aperture, subscript 2 for
the pump), reads

14_14+14 4.173)
St CA1)  \Cy A S CA)’ :




4.5 Flow throughout the Entire Pressure Range | 151

Solving for the intrinsic conductance C; of the aperture yields

1 1T 1 4

G " se st
! 1 4

= - + (4.174)

407s' 1007s™'  4630dm s~ x 0.385dm?2
1
T 58.0¢s
From this, the aperture diameter is calculated:
16 16 58.0¢s7!
d=/ 2. Ce= /- -22205 _ _253dm = 25.3mm. (4.175)

7 z 4630dms~!

If a simple series connection of aperture and pump would have been calculated
as is common in electrical engineering, the following equation would have been
found, rather than Eq. (4.174):

L (4.176)
Ci ™ Set S’ '

which yields C; =66.7 ¢s™" and d = 27.1 mm. The simple calculation neglects
the preferential forward gas motion caused by the entrance aperture (beaming
effect, Figure 4.35).

4.5
Flow throughout the Entire Pressure Range

45.1
Flow Ranges

In practice, one often requires the flow conductance of a component throughout
the entire range from molecular to viscous gas flow. Also, it may happen that the
pressure is high enough for flow to be viscous at the inlet of a tube while the
pressure drops toward the end of the tube to an extent that flow here becomes
molecular. The previous sections cover the two special cases of molecular and
viscous flows. In the transition range, flow behavior is complicated and defies
precise calculation. However, instructive experimental data and approximation
formulas are available.

452
Flow through a Thin Aperture with Circular Cross Section

We will consider the ideal case of a very thin circular aperture (tube of length
| < diameter d). The aperture is arranged between two chambers, with pressure
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Table 4.6 Flow function y* for choked flow, Eq. (4.50), and ratio of conductances in the vis-
cous, Eq. (4.177), and molecular regimes, Eq. (4.143), for flow through an aperture with exit
pressure low compared with inlet pressure.

Monatomic Diatomic Buckled three- Polyatomic
gases: noble gases: air atom gases, for gases, for
gases, metal and so on example, water example, oil
vapors vapor
w* 0.513 0.484 0.476 0.444
Cviscous/cmolecular 1.56 1.48 1.45 1.35

p; in one chamber and negligible pressure p, (p, < p;) in the other chamber.
In the case of molecular flow, conductance

1
Cmolecular = ZZA (4143)

Under viscous flow conditions, flow is determined by gas dynamics. Choked
flow develops if the outlet pressure is low. Conductance is derived from
Eq. (4.27) with Eq. (4.59), taking into account the contraction of flow (Eq. (4.60)):

Cyiscous = 0.86 \/ZEALP* . (4.177)

Table 4.6 lists values of the flow function ¥* for choked flow as well as the ratio
of conductances in the viscous and molecular ranges for selected gas species.
The conductance of the thin aperture shows a change of only approximately
50% across the entire range of flow. Experimental data of aperture conductances
for different gas species are compiled in Figure 4.46. In Figure 4.47, the same
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@
S
O N,
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/ — e —
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e AT Kr
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Figure 4.46 Measured flow conductances of a thin aperture with a diameter of 1.22 mm for
selected gas species at room temperature. Inlet pressure is taken as abscissa and the outlet
pressure is negligible.
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Figure 4.47 Flow conductances of a thin aperture. Same data as in Figure 4.46 but plotted at
normalized abscissa and normalized ordinate.

data are plotted in normalized form. For normalizing, conductance is divided by
the conductance under molecular flow conditions. In addition, rather than pres-
sure, the inverse Knudsen number was used for the abscissa. This was calculated
according to Eq. (4.2), with pressure being the inlet pressure p; (rather than
average pressure).

Comparison shows that theoretical predictions (Table 4.6) are in good compli-
ance with experimental data in the viscous and molecular ranges (Figure 4.47).
Remarkably, conductance passes through a maximum for Knudsen number
Kn™! = 100, that is, at the upper end of the transition range, rather than increas-
ing monotonically from molecular to viscous values. This is because flow is
mostly viscous at this point but the density of the gas is not sufficient for full
contraction (assumed value 0.86) to develop.

Figure 4.47 confirms the assumption in Eq. (4.3) that the flow in an aperture is
molecular for Kn~! < 2 and viscous for Kn~! > 100.

Sharipov [5,6] calculated conductances for thin apertures using the DSCM
(direct simulation Monte Carlo) method in the range K»~! = 0—1000, which
agree reasonably with experiment.

Example 4.16

We will investigate airflow at 20°C through a thin aperture. According to
Eg. (4.144), the volumetric flow density under molecular flow conditions is

jy=11.6¢s"cm™2, (4.178)
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and under gas-dynamic conditions (choked flow) is

C .
jy= 0o _ 086, /7463 m s x 0.484 = 17.1 s em 2. (4.179)
v A 4

The change in conductance of the aperture is low throughout the entire range
of flow regimes. Under molecular flow conditions, a gas particle passes through
the aperture only if it strikes the inlet by chance. Here, conductance (for air) is
approximately 73% of the value under viscous flow conditions where gas particles
move through the aperture collectively from the space in front of the aperture.

453
Flow through a Long Tube with Circular Cross Section

In a long tube, that is, length / > (hydraulic) diameter d, the conductance
Cinolecular in the molecular range is independent of pressure whereas conductance
Cliscous in the viscous range increases with rising pressure. Thus, for sufficiently low
pressures (molecular regime), Cyiscous <€ Crmolecular» and for sufficiently high pres-
sures (viscous regime), Cpolecular << Ciscous- TWO tubes placed in parallel, one with
molecular conductance and the other with viscous conductance, represent a good
approximation for the conductance of a long tube. This can be expressed as

Cx Cmolecular + Cvviscous« (4-180)

This equation correctly describes the two special cases of molecular and viscous
flows, and represents a good approximation for the transition range.

We will now consider a long tube with circular cross section. The conduct-
ance Crolecular in the molecular flow range is given by Eq. (4.141) with Eq.
(4.157). If a tube is sufficiently long, flow in the viscous range is laminar. The
corresponding conductance Ciiscous Was also given previously (Eq. (4.83)). Sum-
ming up the two equations according to Eq. (4.180) yields

3 pd a
c=2(22,7)% ¢ (4.181)
12\32 nc l
Here, 7 is the viscosity of the gas, ¢ is the mean thermal speed of the particles,
and p = (p; + p,)/2, the arithmetical mean of the pressures at the inlet and out-
let. The dimensionless, bracketed term in Eq. (4.181) is referred to as the con-
ductance function f:
3 pd 3z 1

f 32 e 128 Kn ( )
The Knudsen number, Eq. (4.2), used here has to be calculated for mean pres-
sure p.
Calculation shows that the term Z is just equal to 1. Then, the conduction
function f has the value 1 in the molecular regime and increases with increasing

pressure (see curve fz_; in Figure 4.48). Knudsen (1909) performed experimental
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Figure 4.48 Calculated conductance function f, Eq. (4.182), and term Z, Eq. (4.183), versus
inverse Knudsen number.

investigations and observed a dip of the conductance function f. It has the value
of 1 in the molecular regime, then drops slightly with rising pressure until it
reaches a minimum of 0.952 at Kn~! ~ 0.6, and then rises rapidly (see curve
Sficnudsen in Figure 4.48). Thus, flow conductance shows a slight minimum as well.

In order to describe this tube, he introduced a semi-empirical expression for
the dimensionless term Z:

_ 1++/8/x(pd/en) 1+ (1.28/Kn)
14 (21/17)/8/a(pd/ey) 1+ (1.58/Kn)’

Both term Z and the conductance function f only depend on the Knudsen num-
ber Kun and thus apply to all gas species.

For a tube, Figure 4.48 verifies the assumption made in Eq. (4.3) that flow is
molecular for Kn™! < 2 and viscous for Kn~! > 100. pV flow through the tube
is calculated using conductance, Eq. (4.181):

(4.183)

3

n_d
= ——(p; — po)- 4.184
Dv =108 3 1 5 T2t bi-p) (4.184)

Numeric-value variants of the previous equations are listed here for air at 20 °C.
Units used are mbar for p, p;, and p,, cm for d and /, and mbar # 57! for dpv

= 1d p-p

1+ 189pd

—— 4.185
1+234pd’ (4.185)

f(pd) = 11.1pd +

>
dpv 12.17f(pd)(p1 —P2)
da* d®> 1+189pd
135—p+12.1— - ———— | (p, — p,)-
( [P 1+234pd)(p1 2

(4.186)
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Figure 4.49 Conductance function f(pd) according to Eq. (4.185) for air at 20 °C.

The large bracketed term is the conductance of the tube. The conductance func-
tion for air at 20 °C is plotted in Figure 4.49. It features the following limiting
values (p in mbar, d in cm):

f(@d)=1 for molecular flow, i.e., pd < 0.01 mbar cm, (4.187)

f(pd) =0.86+11.1pd for laminar viscous flow, i.e., pd
> 0.66 mbar cm. (4.188)

These equations contain the mean pressure p = (p; + p,)/2. In certain cases, one
of the two pressures p; and p, is unknown, and thus impedes calculation of p.
Here, an iterative method is applied: in the first step, we approximate p = p; or
P = p,, or we choose a reasonable value for p. Then, calculation yields a value for
p; or p,. With this, a new value for p can be obtained, and so forth, until the
desired accuracy is obtained.

Equation (4.186) includes the previously derived formulas for the pV flow of
air at 20 °C in the special cases of laminar and molecular flows.

Example 4.17

A small Roots pump with a pumping speed S = 407 s~', pressure independent

throughout the operating range, is connected to a chamber via a tube of length
/=0.3m and diameter d =40 mm. The pressure in the chamber is p. =
0.02 mbar (see also Figure 4.29). The missing quantity is the effective pumping
speed Seff.
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pc is the chamber pressure and p;, is the pressure at the inlet flange of the
pump. Equation (4.186) is used to solve the problem (g, in mbarZs™', pi,, Pc,
and p in mbar, d and / in cm):

d*
v = PinS = 12.1--f(pd)(Pc = Pin)- (4.189)
Rewriting yields (S=40¢s"", /=30cm, d =4cm)

pc Sl 1.55
— =1+ T =1+t —.
Pin 12.1d°f(pd) f(pd)

(4.190)

The rest of the calculation is carried out iteratively. In the first step, we will
estimate p;, = 0.015 mbar as the initial value.

This leads to pc/p;, =0.02/0.015=1.33 and p =3(0.02+0.015) mbar =
0.0175 mbar.

Thus, pd = 0.07 mbar cm. From this, Eq. (4.185) or Figure 4.49 yields f = 1.60.
Using this value, pc/p;, = 1.97 is obtained from Eq. (4.190), a considerable devia-
tion from the initial assumption p¢/p;, = 1.33.

In the second step, we use the result obtained in step 1 to calculate p;;:
Pin = Pc/(Pc/Pin) = 0.02 mbar/1.97 = 0.0102 mbar.

It follows that p = %(0.02 + 0.0102) mbar = 0.0151 mbar, pd = 0.0604 mbar cm,
and f = 1.50.

With this value, the result p./p;, = 2.03 is obtained, which is already close to
the initial value of the pressure ratio in the second step.

We can use an additional third step: p;, = pc/(Pc/Pin) = 0.02 mbar/2.03 =
0.0099 mbar.

Thus, p = %(0.02 + 0.0099) mbar = 0.0150 mbar, pd = 0.060 mbar cm, f = 1.49,
and p¢/p;, = 2.04.

It follows that the effective pumping speed according to Eq. (4.31) is
Sc = Sinpc/Pin =40£s71/2.04=19.6¢s7".

In the boundary case of viscous laminar flow, the quantity pd reaches high
values and the previously stated result is obtained (numeric-quantity equation,
P, p1» and p, in mbar, d and / in ¢m, g,,,, in mbar s71):

d4-
g,y =135 Tﬁ(pl —p,), viscous laminar airflow. (4.94)

For the special case of molecular flow, the quantity pd in Eq. (4.186) is very low
and the result is equal to that of Egs. (4.145) and (4.157):

3
gy =121 dT(pl —p,), molecular airflow. (4.91)
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Figure 4.50 Flow conductance of tubes with pressure p, is assumed negligible. Molecular
circular cross sections, diameter d = 1cm, and viscous regions were calculated, and in
and selected lengths for air at 20 °C. Inlet the transition region, freehand interpolation
pressure p, is taken as abscissa and outlet  was used.

Finally, Figure 4.50 shows the flow conductance of tubes with circular cross sec-
tion for air.

4.6
Flow with Temperature Difference, Thermal Effusion, and Transpiration

The previous sections covered isothermal systems with temperature 7. Anal-
ogous to Figure 4.34, we will now consider two chambers C; and C, con-
nected by a tube T (diameter d, length [) or an aperture (tube of length
zero). The wall temperatures 77 and T of the chambers are unequal. Cham-
bers C; and C, contain gas with the state quantities p;, n;, T1 and p,, ny, T+,
respectively (Figure 4.51).

Chl | . Ch2
pom A d Py
T l T,

Figure 4.51 Two connected chambers showing unequal temperatures T; and T,.
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For the following, we will assume a stationary condition of equilibrium in
which the net gas flow between the chambers is zero. Different states of equili-
brium develop, determined by the pressures.

For high pressures, the gas particles’ mean free path / is short compared with
the diameter of the aperture or the tube; thus, Kn = I/d < 1. The gas particles
collide frequently and therefore a pressure difference would directly cause a net
particle flow. Thus, in the stationary case,

P, =p; |, in the viscous range. (4.192)

For small pressures, Kn =1/d > 1. The particle flow from chamber Chl to
chamber Ch2 is just the product of the collision rate j; in chamber Chl, area A
of the tube, and the transmission probability Py, from chamber Chl to chamber
Ch2. The particle flow in the reverse direction is calculated analogously. Thus, as
previously stated, the total net particle flow (effusion rate) is

1 1
N =7 n1c1APyy — 1 HaCa APy . (4.137)

In the stationary case, g5, = 0. In addition, the probabilities of passage from
chamber Chl to chamber Ch2 and vice versa are equal (P;; = Py;) as long as
wall reflections of gas particles are temperature independent, which is assumed
here. As the particle velocity ¢ is proportional to the square root of the thermo-
dynamic temperature 7, the particle number densities

m+A/T1 =ny\/T3, in the molecular range. (4.193)

Using the equation of state for an ideal gas, p = nkT, the ratio of the pressures in
both chambers amounts to

Py _ \ /E , in the molecular range. (4.194)
P I,

Thus, under molecular flow conditions, the particle density is lower in the
warmer chamber than it is in the cooler chamber (because warmer gas particles
escape more easily). However, pressure is higher in the warmer chamber
(because the gas particles move faster, and thus collide with the walls more fre-
quently and more violently).

The phenomenon of unequal pressures in connected chambers at different
temperatures is referred to as thermal effusion, or more commonly, thermal
transpiration.

Example 4.18

Capacitance diaphragm manometers are used as sensitive vacuum gauges that
directly measure the pressure acting upon a diaphragm. The temperature of the
diaphragm sensor can be raised and controlled thermostatically in order to
improve measuring accuracy or to prevent gas condensation. Under viscous flow

conditions, pressures in the sensor (chamber C;) and the vacuum chamber
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(chamber C;) are equal. However, in the molecular range, the pressure in the
sensor (chamber C,) is higher than that in the vacuum chamber (chamber C,) as
described by Eq. (4.194). Thus, the pressure registered by the gauge is too high.

At an ambient temperature of 23°C and a sensor temperature of 45 °C, the
pressure ratio

%: 4/318.2/296.2 = 1.036, in the molecular range.

1

Figure 4.52 shows the measured characteristics of a heated (temperature-con-
trolled) diaphragm manometer for different gas species. Helium has the smallest
gas particles of all gas species. A molecule of the refrigerant R12 (CCIL,F,) has a
gas-kinetic impact area 8.3 times as large as helium. The data of different gas
species coincide fairly well if the pressure axis is scaled to the inverse Knudsen
number (Figure 4.53).

An empirical function found by Takaishi and Sensui [7] describes the meas-
ured characteristics. Setina [8] determined the coefficients universally for all gas
species and formulated

s VI2/Ti -1 (4.195)

2214 :
n 0.0181 Kn2 4 0.229 Kn~1 +0.211 Kn=1/2 + 1

1.038
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Figure 4.52 Measured characteristic curve of a capacitance diaphragm vacuum gauge heated
to approximately 45 °C at an ambient temperature of 23 °C. The plot shows the measured ratio
of pressures at the warm internal sensor and at the cold connecting flange.
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Figure 4.53 Characteristic curves of a thermostatically controlled capacitance diaphragm vac-
uum gauge. Same measured data as in Figure 4.52 but with normalized abscissa. The thick
continuous line is the empirical curve according to Eq. (4.195).

with the pressure dependence being in the Knudsen number:

=
al

Kn = (4.2)

BN
Q

p

n and ¢ denote the viscosity and particle velocity of the gas, respectively, and d is
the diameter of the diaphragm manometer’s joining pipe (typically,
d =3/16" = 4.76 mm).

The thermal effusion is treated theoretically for various conditions in
Section 5.5.7.

Example 4.19

In cryotechnology, pressures are often not measured directly at the low-temper-
ature sample but rather by using a measuring instrument at ambient tempera-
ture, which is connected to the sample via a line. The measured pressure is a
multiple of the actual pressure if the sample is at the temperature of liquid
helium (T; = 4.2K) and the measuring equipment is at ambient temperature
(T, = 300K):

p, _ [300K

P 42K
=8.5. (4.196)
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Example 4.20

At different chamber temperatures, gas particles have unequal velocities and are
reflected slightly differently from the walls of a tube. As a result, the probabilities
of passage P;; and P in the two directions of a tube are different to some
extent, depending on the surface of the tube walls. Thus, if several chambers
with, in turns, ambient and cryo temperature are connected in a series via tubes
with alternating surface characteristics, a large pressure ratio between the first
and the last chamber can be obtained under molecular flow conditions [9].

4.7
Measuring Flow Conductances

4.7.1
Necessity of Measurement

As shown in previous sections, flow conductances of vacuum components with
simple geometries can be calculated reliably. The flow conductance of compli-
cated components, especially in the transition range of different types of flow,
can only be estimated. In these cases, measurements are indispensable.

The flow conductance of a component is defined by

dpv
pi—p
g,y denotes the throughput (or pV flow) of the component and p; —p, is the
pressure difference between both ends of the component. In vacuum technology,
the mounting position is crucial because entrance effects occur throughout the
range from molecular to viscous flow. Therefore, intrinsic and reduced conduct-
ances are differentiated. The intrinsic conductance arises when the component is
mounted between two large chambers so that the gas streams into the component
from a chamber. In contrast, the reduced conductance is effective when the com-
ponent is placed into a tube having the same cross section as the component.

The effects due to entrance under molecular flow conditions are discussed
above. For this, a tube was treated as a series connection of an aperture and a
long tube (Section 4.4.7). Intrinsic conductance Cj, is obtained from the con-
ductance of the aperture C, (describing the inflow effect) and the reduced con-
ductance Ci¢q of the long tube (pure tubular flow):

1 1 1
Nt (4.197)
Cint C'A C'red

C= (4.27)

472
Measurement of Intrinsic Conductances (Inherent Conductances)

In order to measure the intrinsic conductance, the investigated component is
placed between two large chambers. Then, a known flow of gas g, is supplied
and the pressure difference between the two chambers is measured.
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Figure 4.54 Measuring setup for determining the characteristic flow conductance of a
component.

As apparent when studying technical literature, arrangements for measur-
ing intrinsic conductances vary considerably. Direct mounting an inspected
component between two chambers would require time-consuming welding
work on every single component. Mounting the component with adapters on
the chambers would disturb the flow. More suitable is an arrangement where
the part is fixed to a mounting plate on one side. This assembly is then
embedded in a divided measurement dome, similar to those used for pump-
ing speed measurements on ultrahigh-vacuum pumps (DIN 28428, DIN
28429, 1SO 5302) (Figure 4.54).

The gas flows through a flowmeter (e.g., thermoelectric flowmeter) and
through an inlet against the lid of the upper chamber Chl, thus featuring a prac-
tically isotropic distribution of particle velocities. The center of the measurement
chamber contains a (replaceable) mounting plate carrying the investigated vac-
uum component that is fixed to the plate vacuum tightly. A turbomolecular
pump evacuates the lower chamber C,. Pressures in both chambers are recorded.
Calibrated vacuum gauges (viscosity vacuum gauges, diaphragm manometers)
yield measuring uncertainties below 1%. The systematic uncertainty of conduct-
ance measurements depends on the size of the component’s inlet opening com-
pared with the inner surface of the chamber. This type of arrangement can be
tested by measuring conductance values for simple components (e.g., tubes with
circular cross sections), for which theoretical conductance values are available.

Measuring conductances of larger components under molecular flow condi-
tions (e.g., valves with connecting flanges of 100 mm diameter and more)
requires measurement domes of considerable size, and thus leads to an
uneconomical measuring routine. The problem is solved by measuring the con-
ductance of a scaled-down model. In the range of molecular flow, the conduct-
ance C of a component scales with the cross-sectional area of the line because
the transmission probability P of the scaled-down model is equal to the original
part’s transmission probability.
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4.7.3
Calculation of Reduced Conductance (Assembly Conductance)

Valves are important components in vacuum systems. Therefore, knowing their
precise conductance as a function of pressure is crucial for system design. Open
ball valves and gate valves can be treated as short tubes. However, valves with a
more complex structure (shape of valve housing, elements inside the housing for
valve actuation, gap-type opening between sealing plate and housing), for exam-
ple, right-angle valves, call for conductance measurements. As valves are usually
mounted to a line or flanges, the relevant quantity here is the assembly conduct-
ance (reduced conductance).

As an example, we will consider a commercial right-angle valve of nominal
diameter DN 40 (actual diameter 41 mm). The apparatus described in the previ-
ous section yielded a measured intrinsic conductance of 28 #s~! for molecular
flow and ambient air. The conductance of an aperture with the diameter of
the flange is 153 #s71. For the reduced conductance (assembly conductance),
Eq. (4.197) yields

1 1 1 1 1
H1Cpy —== - = .
Cred Ca 28¢s71 153¢s71 347571

(4.198)

This value is close to the reduced conductance 32 £ s™!

valve.

, measured directly at the

4.7.4
Measuring Reduced Conductances

The setup shown in Figure 4.55 is appropriate for measuring the reduced con-
ductances of components throughout the entire range of flow.

angle valve

under test

dosage

flowmeter  valve
Qpv

vacuum
gauge

pump

Figure 4.55 Setup for measuring the reduced flow conductance of right-angle valve (shaded)
under any flow regime.
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Figure 4.56 Reduced (assembly) conductance valve, and curve 2 shows the calculated con-
of a right-angle valve of nominal diameter ductance according to Eq. (4.197) for a tube of
25 mm with length of buckled axis: 100mm.  the same axis length.

Curve 1 shows the measured values for the

The test gas flows into the apparatus through a flowmeter (pV flow).
Downstream, a regulating valve is used to adjust the flow. The subsequent
tube moderates the gas flow (to avoid entrance effects) and is made up of a
tube with the same nominal diameter as the measured component. Here, the
test object is a right-angle valve. A single vacuum gauge is used to measure
the pressures p; and p, in front of and behind the test object. For this, it is
equipped with valves that allow alternate connections to the two metering
points. The usage of a single gauge compared with two gauges has the
advantage of avoiding errors caused by differences between two gauges in
addition to that of saving one gauge.

As an example, Figure 4.56 illustrates a measuring curve for the reduced con-
ductance of a right-angle valve of nominal diameter DN 25 as a function of
mean pressure p = X(p; + p,).

The effective length of the axis in the corner valve is 100 mm. For compar-
ison, the figure contains the reduced conductance of a tube of 100 mm length
(calculated using Eq. (4.181)). Obviously, the experimental results are entirely
below the calculated values because of the small cross section inside the
valve.
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5
Analytical and Numerical Calculations of Rarefied Gas Flows
Prof. Felix Sharipov

Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, 81531-990,
Curitiba, Brasil

The aim of this chapter is to detail the concepts described in Chapters 3 and 4 and
to describe the main results of rarefied gas flow calculations based on the kinetic
Boltzmann equation. A simple and accessible presentation of results without a
hard mathematical formalism shall enable physicists and engineers to understand
and simulate rarefied gas flows over the whole range of the Knudsen number.

5.1
Main Concepts

5.1.1
Knudsen Number and Gas Rarefaction

The mean free path [ introduced previously for hard-sphere molecules depends
on the molecular diameter, which is usually unknown and calculated via the
shear viscosity 7. Moreover, the mean free path expression will be different if
one assumes another potential of the intermolecular interaction. To avoid such
an ambiguity, here the equivalent free path ¢ is introduced, which is related
directly to the shear viscosity as

fe=Tm0 (5.1)
p
where cpp is the most probable molecular speed defined by Eq. (3.42) and p is
the gaseous pressure.
The gas rarefaction parameter defined as

a ap
=— = 5’2
7= e (5.2)

Handbook of Vacuum Technology, Second Edition. Edited by Karl Jousten.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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is frequently used instead of the Knudsen number. Here a is a characteristic size
of a duct in which the gas flows. In the literature, most numerical results are
given in terms of this parameter. The limit of large values, that is, § > 1, corre-
sponds to the viscous regime, while the opposite limit, that is, § <« 1, represents
the free molecular condition. Thus, the rarefaction parameter is inversely pro-
portional to the Knudsen number.

5.1.2
Macroscopic Quantities

Besides the previously introduced quantities such as number density #, pressure
p, temperature T, and bulk velocity v, here some additional macroscopic quanti-
ties will be used. Note that the term “bulk velocity” is used in order to distin-
guish it from the velocity of gaseous molecules.

Consider an area segment A, with a normal directed along the x-axis. Let F,
be a force acting in the z-direction. Then the quantity defined as

F,
P,,: A (5.3)

is called the shear stress. It has the same dimension as a pressure.

If Q, is a magnitude of heat crossing the area segment A, per unit time, then
the quantity

Gyi=— (54)

is the x component of the heat flux vector g. The dimension of this quantity is W m™2

513
Velocity Distribution Function

The velocity distribution function f(r, c¢) used in this chapter is assumed to be
dependent on the spatial position vector r and on the molecular velocity vector
c. Generally speaking, it also depends on the time, but here only time-indepen-
dent flows will be considered so that the dependence on the time will be omit-
ted. The distribution function is defined as

dN
Sf(r, 0= Lrdc’
where dN is the number of particles in the phase volume d*rd®c near the point (r, c).

All macro-characteristics of gas flow can be calculated via the distribution
function:

(5.5)

Number density

n(r) = J/(r7 od’c, (5.6)
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Bulk velocity
v(r) = %ch (r, o)d’c, (5.7)

Shear stress

P(r) = mpj<cx V(e — v O, (5.8)
Temperature

T(r) = %j(c—V)zf(r, odc, (59)
Heat flux

7,(x) = % J(c —vR(cs — v )f (x, c)dc. (5.10)

The integration in Egs. (5.6)—(5.10) with respect to the molecular velocity
means the threefold integral over the whole velocity space, that is,

J...d3c=J J J ...dcydeyde;. (5.11)

—00J —00J —00

5.1.4
Global Equilibrium

Global equilibrium means that no macroscopic motion of one part of the system
is relative to another, there is no heat exchange between different parts of the
system, and no chemical reactions occur. In such a state, all macroscopic quanti-
ties (pressure, temperature, and concentrations) are constant over time and
space. Under these conditions, the velocity distribution function is given by the
absolute Maxwellian:

M _ mp \3/2 _mP02
f (n,T)—rI(TrkT) exp( 2/<T)' (5.12)

Note that the function Fy given by Eq. (3.41) characterizes the distribution of the
molecular speed ¢, while the function f™ describes the distributions of the veloc-
ity components according to Eq. (5.5).
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The mean (or thermal) molecular speed is calculated as

65=1JC_}(Md3C — 8k 2
n

THip f

To calculate the wall flux density or the number of particles striking a unit
surface per unit time, we consider a plane surface fixed at x = 0 and a gas occu-
pying the space x < 0. Then, the flux of particles to the surface is calculated as

(5.13)

[ [® 1 2kT 1
jN = J J’ J foMddeCydCz = 5}/[ _—= ZLI’[E7 (514)
0

—o00J —oco nnip

where Eq. (5.12) with ¢* = ¢} + ¢} + ¢} and Eq. (5.13) have been used.

5.15
Local Equilibrium

Let us divide a system into many small subsystems so that each of them still con-
tains a large number of molecules. Each subsystem can stay in equilibrium, but
the concentration # and temperature T can slowly vary from one subsystem to
another. Moreover, each subsystem can move with its one bulk velocity v. Such a
state is called local equilibrium. It occurs in the viscous regime, that is, when the
Knudsen number is small. In this case, we have the local Maxwellian distribution
function determined by the local values of n, T, and v and denoted as

32 mp[c —v(r)]’
M, T,v) = @)L kT(J em){———azfag——}. (5.15)

However, in the transitional and free molecular regimes, the local equilibrium is
broken, and then the distribution function is calculated from the kinetic Boltz-
mann equation.

5.1.6
Boltzmann Equation

The Boltzmann equation determines the evolution of the distribution function.
The main idea of its derivations consists of the fact that at a fixed point of the
physical space, the distribution function varies due to the intermolecular colli-
sions, that is, its total derivative is given as

df — - (5.16)

where J* is the rate of gain of particles in the velocity space near the point ¢ due
to the collisions and J~ is the rate of the loss of particles at the same point. The
total derivative can be written as

& o o oc o
o T o (517)
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Note that the second term on the right-hand side means the scalar product,
that is,

c~%=cx%+cy%+czg—j;. (5.18)
The third term on the right-hand side of Eq. (5.17) is calculated similarly.

The rates J* and /™ are calculated regarding the details of binary collisions.
For our purpose, it is enough to consider the Boltzmann equation in the absence
of external forces, that is, dc/dt = 0, and under the stationary conditions, that is,
of /0t = 0.

The stationary flow means that all macroscopic quantities (pressure, tempera-
ture, concentrations, bulk velocity, shear stress, and heat flow vector) are time
independent, but they are functions of the space coordinates.

Finally, the stationary Boltzmann equation reads

. % — Tt 4T = I, (5.19)

where the collision integral J( ff.) takes the form

J(fFf) = ”J( FE. — ffowdede de.. (5.20)

Here, the affixes to f correspond to those of their arguments c: f' = f(c'),
f+« =f(c+). The quantity w = w(c, c+; ¢, c,) is the probability density that two
molecules having the velocities ¢’ and ¢, before a collision will have the veloc-
ities ¢ and cx, respectively, after they collide. Its specific expression depends on
the potential of the intermolecular interaction. The main properties of the colli-
sion integral J(ff ) can be found in Refs [1-6]. Note that Eq. (5.19) was obtained
considering only binary intermolecular collisions, which is not valid at high pres-
sures. However, for any pressure lower than or equal to atmospheric pressure,
this assumption is well fulfilled.

In the case of weak nonequilibrium, the Boltzmann equation can be linearized
representing the distribution function as

fr,0) =fR1+&n(r,0)], <1, (5.21)

where £ is a small parameter, / is the perturbation function, and f II\{[ is the refer-
ence Maxwellian given by Eq. (5.15) with the reference number density ng, tem-
perature T'r, and bulk velocity vy, that is,

fll\{/[ =fM(nR7 TRavR)' (522)

The quantities ng, Tx, and vg are chosen such that computational effort is
reduced. Particularly, they can be constant and equal to their equilibrium values.
Substituting (5.21) into (5.19), the linearized Boltzmann equation is obtained as

oh .
c = Lh+g(r,c), (5.23)
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where L is the linearized collision operator:
Lh= JH/y(c*)(h' + 1, —h—hywddd’c, dc.. (5.24)

Here K., /', h., and & represent the perturbations of f/, f', f., and f, respectively.
The nonequilibrium source function g is given as

c dlnfy
'
If the reference quantities ng, T, and v are constant, then g(r, c) = 0.

Substituting Eq. (5.21) into Egs. (5.7), (5.8), and (5.10), the linearized expres-
sions of the moments are obtained:

gr,c)=~ (5.25)

v(r) —vg = ni chRMh(r, od’c, (5.26)
R

P,,(r) = §mchxchMh(r, o)dc, (5.27)

q,(r) = gJ(mPcz - SkTR)cxfyh(r, od’c. (5.28)

517
Transport Coefficients

In this section, the definitions of the transport coefficients, that is, shear vis-
cosity # and thermal conductivity 4, and main ideas of how to calculate them
from the Boltzmann equation are described. It is necessary to emphasize that
both shear viscosity # and thermal conductivity A are defined so that they do
not depend on the pressure of gas, but they depend only on the gas species
and on its temperature. The explicit expressions of the coefficients will be
given only for the hard-sphere model of intermolecular potential. For other
kinds of potential, the transport coefficient expressions can be found in
Refs [2,3].

Viscosity Coefficient
Let us consider a gas flow in a boundless region with the bulk velocity v given as

v=[0,0,v,], v,xx, (5.29)

that is, the bulk velocity has only the z component linearly depending on x, while
the pressure p and temperature T of the gas are constant over the whole space.
According to the Newton law, the shear stress P,, is proportional to the velocity
gradient, that is,

dv,

sz = —na, (530)
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This relation defines the viscosity coefficient #. Under such conditions, the
Boltzmann equation is linearized using the quantity & = (£/cmp)(dv;/dx) as the
small parameter. The reference density ng and the temperature T are assumed
to be constant in Eq. (5.22), while the reference velocity vg to be given by Eq.
(5.29). Then Eq. (5.23) takes the following form:

CxCz

Lh-2
£Cmp

=0. (5.31)
This is a complicated integral equation where / is an unknown quantity depend-
ing only on the molecular velocity c¢. Once the perturbation function #/ is
obtained from Eq. (5.31), it is substituted into Eq. (5.27) and the viscosity
coefficient # is calculated with the help of Eq. (5.30).

A numerical solution of Eq. (5.31) is a very difficult task, which requires
knowledge of the intermolecular interaction law. For the hard-sphere molecules,
such calculations were carried out in Ref. [7] where the following expression for
the viscosity was obtained:

— 1.016034 2% ympncl ~ - mpnicl (5.32)
n=1. 35 /1ol ~ 5 mpncl. .

Here, the mean free path [ is given by Eq. (3.55).

Thermal Conductivity Coefficient

Now, let us consider a gas being at rest, that is, v = 0, and occupying an infinite
region. However, the gas temperature is not constant, but its deviation from the
equilibrium value T linearly depends on the x-coordinate, that is,

(T(x) — To) xx. (5.33)

According to the Fourier law, the heat flux is determined as

<V
=-1—, 5.34
qx ™ (5.34)
where 4 is the heat conductivity. To calculate it, the Boltzmann equation is lin-
earized using the quantity & = (¢/T)(dT/dx) as the small parameter and assum-
ing the reference temperature T to be given by Eq. (5.33), the pressure to be
constant, and the bulk velocity to be equal to zero. Then Eq. (5.23) is reduced to

. [ 5
Lh-%<;_-§>=o. (5.35)

mp

This is practically the same integral equation as Eq. (5.31) with the different free
term. Here / also depends only on the molecular velocity c. When the perturba-
tion function # is obtained from Eq. (5.35), it is substituted into Eq. (5.28). Then
the heat conductivity is obtained with the help of Eq. (5.34).
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The numerical solution of Eq. (5.35) for the hard-sphere potential is reported
in Ref. [7], where the following expression is given:

75 - 15 -
2= 1.025218 -7 knel ~ — ke, (5.36)
128 8
where [ is given by Eq. (3.55).

Prandtl Number
The transport coefficients 1 and A are related via the Prandtl number defined as

n
Pr= sz’ (5.37)
where ¢, is the specific heat at constant pressure. If one substitutes the expres-
sions (5.32) and (5.36) into this definition and takes into account c, = 5k/(2m),
then one obtains

2
Pr = 0.66069 ~ 3 (5.38)

It can be verified that the Prandtl number calculated on the basis of experimen-
tal data for the transport coefficient is very close to 2/3 for all monoatomic gases.

5.1.8
Model Equations

A numerical solution of Egs. (5.19) and (5.23) with the exact expression of the
collision integral requires a great computational effort; that is why some simpli-
fied expressions of J(ff.) are used. The kinetic equations with such expressions
maintain the main properties of the exact Boltzmann equation, but they allow us
to reduce significantly the computational effort to calculate rarefied gas flows.
The simplified kinetic equations are called model equations.

The most usual model equation was proposed by Bhatnagar, Gross, and Krook
(BGK) [8] and by Welander [9]. They presented the collision integral as

Jeak(ff+) =v[fM = f(x,0)]. (5.39)

Here fM = fM(n, T,v) is the local Maxwellian given by Eq. (5.15), where the
local values of the number density #n(r), bulk velocity v(r), and temperature 7'(r)
are unknown and calculated via the distribution function f(r, ¢) in accordance
with the definitions (5.6), (5.7), and (5.9), respectively. Thus, the kinetic equa-
tion (5.19) with the model collision integral (5.39) continues to be nonlinear.
The parameter v is chosen so as to provide the correct expression of one trans-
port coefficient, that is, # or 4. However, no choice of v provides the correct
Prandtl number (5.38). Thus, it is impossible to obtain correctly both viscosity
and heat conductivity using a unique expression of v. If one uses the expression

u(r) = 1? ) (5.40)
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then one obtains the correct viscosity coefficient and hence a correct description
of the momentum and mass transfer. However, if one is interested in a correct
description of heat transfer, one should use the expression

u(r) = >pk = Pr@,

= 541
2 mi n ( )

which provides the correct heat conductivity. Here, Eq. (5.37) has been used.

The S model proposed by Shakhov [10] is a modification of the BGK
model giving the correct Prandtl number. The collision integral of this model
reads as

. 2
Js(ff+) =1;{fM {1 +£45(;C%i) (Cg—g)] —f(r,c)}, C=c-v.

mp

(5.42)

Since the model equations (5.39) and (5.42) significantly reduce the computa-
tional effort, they are widely used in practical calculations. However, to obtain reli-
able results, one should apply an appropriate model equation. If a gas flow is
isothermal and the heat transfer is not important, the BGK equation is the most
suitable model equation. If a gas flow is nonisothermal, it is better to apply the
S model.

5.1.9
Gas-Surface Interaction

On a boundary surface, the velocity distribution function of incident particles f~
is related to that of reflected molecules f* as

coft(c) = —J / Oc’,f_(c’)R(c’,c)dgc’, ¢, 20, (5.43)

S

where ¢ is the velocity of incident particles, c is the velocity of reflected parti-
cles, ¢, = ¢+ n is a normal velocity component, and n is the unit vector normal
to the surface directed to the gas. The explicit expression of the scattering kernel
R(c', c) depends on the gas—surface interaction law.

In practice, the concept of accommodation coefficient a is frequently used,
which is defined as

_ W= L
a(l//)_j_(l//)_jgiff(l//)’ 7w Jznzgmf (O (c)dc, (5.44)

where j%(y) is the flux of the property w(c) for the reflected/incident parti-
cles and ji is the flux corresponding to the diffuse scattering. For instance,
when y = (1/2)mc?, then a(y) will be the energy accommodation
coefficient.
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Table 5.1 Accommodation coefficient a extracted from the exper-
imental data [11] applying the diffuse-specular kernel (5.46).

a
Gas a b C
He 0.71 0.71 0.96
Ne 0.80
Ar 0.88 0.87 0.98
Kr 0.92 0.92 1.00

a: atomically clean silver; b: atomically clean titanium; c: titanium
covered by oxygen.

The well-known diffuse scattering (cosine law) corresponds to the following ker-
nel:

mac mpc?
Ry(c',c) = —2" _ ex (— ), 5.45
a€. 0= wr.y &P \"uT, (5.45)

where T, is the surface temperature. Physically, it means that a particle can be
reflected to any direction independent of its velocity before the collision with a
surface. Such an interaction is called complete accommodation because it provides
a =1 calculated by Eq. (5.44). In many practical applications, the diffuse scattering
is well justified and provides reliable results. It usually happens for technical sur-
faces, which are rough and uncleaned. However, the interaction of gas with a
smooth and atomically clean surface can differ from the diffuse scattering.

To take into account a noncomplete accommodation, it is assumed that a part
of incident particles are scattered diffusely, while the rest of the particles are
reflected specularly. Such a model of the gas—surface interaction is called dif-
fuse-specular. If one calculates the accommodation coefficient o defined by Eq.
(5.44) for this model, one obtains that the part reflected diffusely is exactly equal
to the accommodation coefficient a for any function y/(c). Thus, the correspond-
ing kernel is written down as

Rys(c', ¢) = aRy(c', €) + (1 — a)d(c; — ¢p)d(c,, + cu), (5.46)

where c; is the two-dimensional tangential velocity.

Numerical values of the coefficient a obtained from the experimental results
reported in Ref. [11] are given in Table 5.1. The corresponding experimental
results were obtained for an atomically clean surface, that is, surface prepared in
vacuum conditions by vapor deposition.

However, some experimental data contradict theoretical results based on the
kernel (5.46) (see Section 5.5.7). The main reason of such a contradiction is that
the diffuse-specular kernel contains just one parameter and cannot describe the
complexity of the gas—surface interaction. Thus, another kernel containing more
parameters should be used, for example, that proposed by Cercignani and
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Table 5.2 Accommodation coefficients o, and a,, extracted
from the experimental data [13,14] applying the CL kernel
(5.47): surface is typically technical.

Gas ot an
He 0.90 0.10
Ne 0.89 0.75
Ar 0.96 1.00
Kr 1.00 1.00
Xe 1.00 1.00
H, 0.95

N, 091

CO, 1.00

Lampis (CL) [12]:

Rer(c,c) =

mlz,cn { mp[ce — (1 — at)c’t]2}
5 X exp q —
r2a,6.(2 — 6.)(2kT,) 2k T 0(2 — o)

exp ] — mp [cfl +(1- an)c;ﬂ
P 2kT wa,

y J27rexp {mP\/l — (,l,,,CnC;qCOS ¢}d¢,

0 kT a,

(5.47)

where the coefficient a,, is the accommodation coefficient of energy correspond-
ing to the normal velocity c,, which varies from 0 to 1, while o is the accommo-
dation coefficient of the tangential momentum, which varies from 0 to 2. In
other words, if one substitutes the kernel (5.47) into Eq. (5.44) using y = mc2,
one obtains a(y) = a,. Using the function y = mc; in Eq. (5.44), one obtains
a(y) = oy. In the particular case a, = oy = 1, the kernel (5.47) coincides with the
diffuse one (5.45). The combination a, = 0 and 6; = 2 corresponds to the back
scattering, which can occur on a rough surface. Numerical values of the accom-
modation coefficients o; and a,, extracted from the experimental data on the slip
coefficients [13] and on the heat transfer [14] are presented in Table 5.2. The
corresponding experimental measurements [13,14] were carried out for a techni-
cal surface, that is, without any special treatment.

From Tables 5.1 and 5.2, it can be seen that heavy gases such as Kr, Xe,
and CO, are characterized by the complete accommodation on a technical
surface, while light gases such as He and Ne do not undergo diffuse scat-
tering. The accommodation coefficients also depend on the chemical com-
position of surfaces. If a surface is atomically clean, the scattering is less
diffuse.
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5.2
Methods of Calculations of Gas Flows

5.2.1
General Remarks

Methods of calculations depend on the gas flow regime. In the viscous regime
(Kn < 0.01), the continuum mechanics equations are successfully used. Main
results based on these equations are given in Chapter 4. A moderate gas rarefac-
tion, say Kn < 0.1, can also be considered on the continuum mechanics level if the
velocity slip and temperature jump boundary conditions are applied. The explicit
form of such conditions and recommended values of the slip and jump coeffi-
cients are given in Section 5.3. The free molecular regime (Kn > 100) — when all
molecules move independent of each other — is relatively easy for analytical and
numerical calculations. Some results for this regime are also given in Chapter 4.
In this chapter, more details will be given on the methods used in the transi-
tional regime when the Navier—Stokes equation is not valid any more, but the
intermolecular collisions cannot be neglected. All methods used in this regime
can be divided into two large groups: deterministic approach based on solving of
the kinetic equation (5.19) and probabilistic approach representing a Monte Carlo
simulation of a large amount of model particles considering collisions between
them and their interaction with a solid surface. The main ideas, advantages, and
disadvantages of both approaches are described in the following sections.

522
Deterministic Methods

The deterministic methods are based on analytical or numerical solution of the
kinetic equation (5.19) or its linearized form (5.23). Usually, the collision integral
J is substituted by its model, for example, (5.39) or (5.42). Here, the method is
illustrated for the BGK model, that is, Eq. (5.19) with (5.39), but it remains the
same for any other model and for the Boltzmann equation itself.

If a set of values of the molecular velocity ¢; is chosen, then the kinetic
equation (5.19) is replaced by a system of differential equations for the functions
f(r) =f(x, c;) coupled with the collision integral, that is,

af (r) D4 Ua)f () = vy M (), (5.48)
where Eq. (5.39) has been used. The Maxwellian fi\/[(r) defined by Eq. (5.15)
depends on the coordinates r via the moments #(r), v(r), and 7'(r), which are
calculated by some integration rule, that is,

n(r) 11
v | =30 aS oW (5.49)
W] | (- vy

3nk

according to Egs. (5.6), (5.7) and (5.9), respectively. Here, W is the weight of the
node ¢;.
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The system (5.48) with (5.49) is solved by an iteration procedure. First, some
values of the moments #(r), v(r), and T(r) are assumed in all points of the physi-
cal space r. Then, the following steps are executed:

i) The differential equations (5.48) are solved for each molecular velocity ¢;
applying a finite difference scheme.

ii) New values of the moments are calculated at all points of the physical space
using Eq. (5.49).

iii) The convergence is verified comparing the moments obtained in two suc-
cessive iterations. If the convergence is reached, all moments of practical
interest (density, bulk velocity, pressure tensor, temperature, etc.) are calcu-
lated using the rule (5.49), and the calculations are stopped. If the conver-
gence is not reached, all steps are repeated.

The main advantages of the discrete velocity method are as follows: (i) Since
the method is deterministic, it is completely free from any kinds of statistical
noise; therefore, this method is indispensable in case of low Mach number flows.
(ii) It requires a modest computational memory because the calculations are car-
ried out so that it is not necessary to store the distribution function at all points
of the physical and velocity spaces. However, a realization of this method needs a
careful choice of numerical grids in both physical and velocity spaces. It is not so
easy to adapt a physical grid to a complicated geometrical configuration. In
many practical problems, the distribution function is discontinuous, requiring a
special modification of the method. The iteration convergence is very slow at
small values of the Knudsen number, that is, a special methodology of accelera-
tion [15] must be used. Details of the method are given in Section 3.13 of Ref. [4]
and in Refs [5,16].

If one applies a linearized model equation, then a system of integral equations
can be obtained for distribution function moments. These equations can be
solved by a variational method with a quite modest computational effort. Apply-
ing this method, care must be taken regarding the velocity space grid and distri-
bution function discontinuity. However, the method needs a large computational
memory. Details about the method can be found in Chapter IV, Section 12 of
Ref. [1].

5.2.3
Probabilistic Methods

The probabilistic methods consist of numerical simulations of molecule motion,
interaction between them, and their interaction with a solid surface. Since both
gas—gas and gas—surface interactions are stochastic processes, random numbers
are used in their simulations. Therefore, this approach is called the direct simu-
lation Monte Carlo (DSMC) method.

To realize the DSMC method, the region of the gas flow is divided into a net-
work of cells with dimensions such that the change in flow properties across
each cell is small. Then a huge number (about 10”) of molecules are distributed
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over the gas flow region, that is, their positions r; and velocities ¢; are stored in a
computer memory. The time is advanced in discrete steps of magnitude A, such
that it is small compared with the mean time between two successive collisions.
The particle motion and intermolecular collisions are uncoupled over the time
increment At by the repetition of the following procedures:

i)

ii)

iii)

The particles are moved through the distance determined by their velocities
¢; and At and new positions are calculated as

i new = Ij old + CAL. (5.50)

If the straight trajectory crosses a solid surface, a simulation of the gas—
surface interaction is performed according to a given law, that is, a new
velocity c; is generated and the particle continues to move with the new
velocity. If the new position r; ey is out of the computational region, then
the information about the corresponding particle is removed. It happens if
the gas flow region is not closed, but some surfaces allow influx and outflux
of the gas.

New particles are generated at boundaries when there is an inward flux.
This step is necessary in the case of a nonclosed region of the gas flow. The
generation is done according to a boundary condition. Usually, a local
Maxwellian (5.15) with given values of the density n, bulk velocity v, and
temperature T is generated.

Following the no time counter (NTC) method [17], a representative num-
ber of collisions appropriate to Az and number of particles in every cell is
calculated as

At
— 551
Vo (5.51)

max

1
Neol = ENNFN(GCr)

where N is the number of model particles in the cell at the current
time interval, N is its average magnitude during all previous intervals,
Fy is the number of real particles represented by one model particle, o
is the molecule cross section that can be dependent on the relative
molecular velocity ¢, (6¢r),. represents a maximum value of the
product (oc;), and V¢ is the cell volume. Then a random pair of parti-
cles being in the same cell is chosen and its product (oc,) is calculated.
The pair is accepted for collision if the ratio (oc;)/(o¢;).y is larger
than a random number. Otherwise, it is rejected. Such a procedure
provides more collisions between fast particles and less collisions for
low-speed ones. If the pair is accepted, the precollision velocities of
the particles are replaced by the postcollision values in accordance
with the given potential of the intermolecular interaction. Recently, a
technique allowing application of any intermolecular potential has
been proposed [18].

The moments are calculated according to Egs. (5.6)—(5.10). For instance,
the bulk velocity in every cell is calculated as the average velocity of all
molecules in the cell, that is,
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v=y Y e (5.52)

Steps (i)—(iv) must be repeated many times in order to establish a stationary
flow. Then the simulations must be continued in order to calculate the average
values of the moments over many iterations (samples).

In the free molecular regime (Kn > 1), the particles do not suffer any mutual
collisions and it is not necessary to simulate their motion simultaneously, but the
motion of every particle can be simulated independent of the others. First, a par-
ticle is generated on a boundary of gas influx, that is, its position and velocity are
generated according to a boundary condition. Then, using the generated position
and velocity, the point of it hitting a solid surface is calculated. A new particle
velocity is generated according to the gas—surface interaction law and the point
of the next hit is calculated. In this way, the whole trajectory of the particle is
simulated up to its exit from the computational region. Repeating this procedure
with many particles, statistical information is accumulated, which allows us to
calculate macroscopic quantities such as the mass flow rate. This technique is
called the test particle Monte Carlo method.

Thus, the idea of the probabilistic method is very clear. To use it, neither grids
in the velocity space nor finite difference scheme is necessary. The physical cells
can be easily adapted to any geometrical configuration. It is not difficult to simu-
late nonelastic collisions occurring in polyatomic gases. Even more complicated
phenomena such as dissociation, ionization, and so on are considered without a
great effort. The book by Bird [17] contains numerical codes that can be modi-
fied and used in practical calculations. Because of these advantages, the direct
simulation and test particle Monte Carlo methods are so widely used in practice
that many researchers think that any gas dynamic problem can be solved by
these methods.

However, the probabilistic methods have their own shortcomings and cannot
be considered as a universal remedy. The main defect of the method is the statis-
tical scattering (or statistical noise), which is reduced by increasing the number
of samples. Initially, the DSMC method was elaborated for aerothermodynamic
problems, where the Mach number is extremely high. Under such conditions,
the statistical noise is very low and a small number of samples provide reliable
results. When the Mach number is small, which is usually the case in vacuum
systems, then one needs such large numbers of samples to reduce the noise that
the computational time becomes inadmissibly long. In this case, an application
of the deterministic approach is considerably more advantageous.

53
Velocity Slip and Temperature Jump Phenomena

A moderate gas rarefaction can be taken into account by solving the continuum
mechanics equations with the velocity slip and temperature jump boundary
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conditions. In some applications, these solutions can be applied practically up to
the transition regime. Analytical expressions based on the slip and jump bound-
ary conditions represent an asymptotic behavior of a numerical solution based
on the kinetic equation in the limit Kn — 0. Thus, the slip and jump solutions
can be used as a criterion to verify an uncertainty of numerical results.

In this section, the velocity slip and temperature jump conditions are formu-
lated. Recommended data on the corresponding coefficients are provided. Some
examples of their applications are given in the subsequent sections.

5.3.1
Viscous Slip Coefficient

Consider a gas flowing in the z-direction near a solid surface being at rest. Let
the x-axis be directed normally to the surface toward the gas, as is shown in
Figure 5.1. According to the slip condition, the bulk velocity of a gas is not equal
to zero on the surface, but its tangential component v, is proportional to its nor-
mal gradient:

v, = ﬂpf%, at x=0, (5.53)

where the equivalent free path ¢ is defined by Eq. (5.1) and f; is the viscous slip
coefficient calculated from the kinetic equation applying to the Knudsen layer.
Such a layer is adjacent to the solid surface and has the thickness on the order
of the molecular free path. The condition (5.43) is assumed on the solid surface,
that is, on the lower boundary of the Knudsen layer, while a local Maxwellian
distribution function is assumed on the upper boundary of the Knudsen layer.
The quantity & = (£/cmp)(0v,/0x) is used as the linearization parameter. Then

< >

Slip

Figure 5.1 Scheme of viscous velocity slip, Eq. (5.53): the solid line represents the real velocity
profile; the dashed line represents the extrapolation of the linear profile up to the surface.
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the linearized kinetic equation (5.23) is solved numerically. The detailed tech-
nique of calculations of the slip coefficient f, and their numerical values can be
found in Refs [19-21].

The velocity profile shown in Figure 5.1 by the solid line represents a numeri-
cal solution of the S model. It can be seen that outside of the Knudsen layer
(x > ©), the velocity linearly depends on the x-coordinate, that is, v,x(fp? + x).
However, near the surface, 0 < x < #, the profile is not linear, but has a small
defect, which does not contribute to the first-order slip correction. Thus, the
viscous slip coefficient fp is calculated via the extrapolation of the linear velocity
profile up to the surface.

The value of the slip coefficients fp recommended in practical calculations is
as follows:

Bp = 1.018, (5.54)

which was obtained under an assumption of complete accommodation on the
surface. The BGK model provides practically the same velocity profile and the
same value of the slip coefficient.

In the case of noncomplete accommodation, the kinetic equation was solved
with the boundary condition (5.47) in Ref. [21]. It was observed that the slip
coefficient f;, is very weakly affected by the energy accommodation coefficient a,,
but it strongly depends on the momentum accommodation coefficient ;. The
numerical data based on the CL scattering law can be interpolated by the formula

1.772

Ot

Pr(or) = - 0.7540. (5.55)

The data on the viscous slip coefficients for gaseous mixtures can be found in
Ref. [22].

53.2
Thermal Slip Coefficient

If the solid surface is nonisothermal, but its temperature varies along the z-axis,
Ty, = Tw(2), as is depicted in Figure 5.2, then the gas begins to flow near such a
surface from the cold to the hot region. In this case, the tangential velocity v, of
the gas is proportional to the temperature gradient:

n 0T

& ﬂTTanp gz FEY (5:56)

where S is the thermal slip coefficient, which is calculated from the linearized
kinetic equation applied to the Knudsen layer. The quantity & = (£/T)(0T/0z) is
used as the small parameter. The detailed technique of calculations of the ther-
mal slip coefficient on the basis of the kinetic equation (5.23) and their numeri-
cal values can be found in Refs [21,23].

The velocity profile shown in Figure 5.2 by the solid line represents a numeri-
cal solution of the S model. It can be seen that outside of the Knudsen layer,
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z

Figure 5.2 Scheme of thermal velocity slip, Eq. (5.56): the solid line represents the real velocity
profile; the dashed line represents the velocity magnitude far from the surface.

x > 27, the velocity is practically constant, but inside of the Knudsen layer,
0 < x < 22, it sharply decreases. The variation of the velocity profile near the
surface does not contribute to the first-order slip coefficient. So, the thermal slip
coefficient f1 is calculated via the value of the velocity far from the surface, that
is, at x > 27.

In practice, it is recommended to use the following value:

B =1.175, (5.57)

which was obtained for the diffuse gas—surface interaction. As was shown in
Ref. [21], the thermal slip coefficient S is significantly affected by both accom-
modation coefficients a, and oy, so it is difficult to propose a formula interpolat-
ing the numerical data reported in Ref. [21].

If one deals with a gaseous mixture, the corresponding data on the coefficient
P are reported in Ref. [24].

533
Temperature Jump Coefficient

Let us assume that the temperature varies in the direction normal to a wall. Then
the temperature of gas T, near the wall is not equal to the wall temperature T,

but there is a jump proportional to the normal temperature gradient, that is,

oT.
Tg— Ty = nga—xg, at x=0, (5.58)
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< T,(x) =T,
Jump g v

Figure 5.3 Scheme of temperature jump, Eq. (5.58): the solid line represents the real tempera-
ture profile; the dashed line represents the extrapolation of the linear profile up to the surface.

where {7 is the temperature jump coefficient. The scheme of the jump is shown
in Figure 5.3. To calculate the coefficient {r, the kinetic equation (5.23) is solved
in the Knudsen layer using the small parameter & = (£/T)(0T/Ox). The detailed
technique of the calculations and numerical values of { can be found in
Ref. [21].

The temperature profile shown in Figure 5.3 by the solid line represents a numeri-
cal solution of the S model. It can be seen that outside of the Knudsen layer, x > 27,
the temperature linearly depends on the x-coordinate, while inside of the Knudsen
layer, 0 < x < 27, there is a small deviation from the linear dependence. Such a devi-
ation is of the second order with respect to the Knudsen number and is neglected in
calculations of the temperature jump coefficient.

It is recommended to use the value

{r =1.954 (5.59)

in practice, which was obtained for the gas—surface interaction corresponding to
the complete accommodation.

The values of {1 for the nondiffuse scattering kernel (5.47) can be found in
Ref. [21]. Like the thermal slip coefficient, it is also significantly affected by both
accommodation coefficients a, and oy, so no interpolating formula was obtained.

In case of gaseous mixtures, the temperature jump coefficient {1 was calcu-
lated in the work [25].

5.4
Momentum and Heat Transfer through Rarefied Gases

In this section, two classical problems of fluid mechanics will be considered,
namely, Couette flow, that is, gas confined between two surfaces moving relative

185



186

5 Analytical and Numerical Calculations of Rarefied Gas Flows

to one another, and heat transfer through a gas between two surfaces having
different temperatures. The results are given over the whole range of the gas
rarefaction, including the velocity slip and temperature jump analytical
solutions.

54.1
Planar Couette Flow

Consider two parallel plates placed at x = 0 and x = d, as is shown in Figure 5.4.
The lower plate (x = 0) is fixed, while the upper plate moves with a speed v, to
the right. To apply the linearized kinetic equation, it is assumed that v,, < ¢pp.
Then, the ratio £ = vy, /cmp is used as the small parameter of the linearization.
The distance d is adopted as the characteristic size, so that the rarefaction
parameter is given as

6= d_p (5.60)
NCmp
Our aim is to calculate the velocity profile v,(x) and the shear stress P,, as func-
tions of the rarefaction parameter 6. Note that the quantity P,, does not vary
between the plates due to the momentum conservation law.
In the free molecular regime (6 — 0), the solution of the kinetic equation (5.23)
can be obtained analytically, see Section 4.2 of Ref. [4]. For the diffuse gas—
surface interaction, the shear stress and the bulk velocity read

1€=—1L&% w@=%€ for 65— 0. (5.61)

7 Cmp
So, in this regime, the velocity v,(x) is constant over the gap and equal to the
mean value of the speeds of the two plates.
Using the method of successive approximations based on the kinetic
equation (5.23), it is possible to obtain the first correction for small values of &:

T
%:@G-%ﬁ,@&«L (5.62)
A
X VW
— >
d
> >

Figure 5.4 Scheme of planar Couette flow.
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In the viscous regime (6 — o), the Navier—Stokes equation with the slip
boundary condition (5.53) is applied, which for the problem in question reads
d
Vw_ﬁpl/ﬂ%7 at x=d,
v, = d X (5.63)
ﬁpfaz, at x=0.
At the upper plate (x = d), the slip condition determines the difference between
the surface speed vy, and that of the gas v,. Then, the velocity profile is obtained
analytically

-1
x
V(%) = vy <g +%’) (1 + 2%) , for &6>1. (5.64)
The shear stress is obtained from Eq. (5.30) as
v 26\ _ o VT
P,, = -ngw (1 +7P> = pim FRETR for 5> 1. (5.65)

As expected, the velocity slip on the surfaces reduces the shear stress.

In the transition regime (6~1), the kinetic equation (5.23) is solved numeri-
cally. Once the perturbation function / is known, then the bulk velocity v,(z)
and shear stress P,, are calculated with the help of Egs. (5.26) and (5.27), respec-
tively. The corresponding numerical data can be found in Refs [26-28]. The
velocity profile v,(x) obtained from the BGK model assuming the complete
accommodation is plotted in Figure 5.5 for four values of the rarefaction param-
eter. At 6 = 10, the solution of the kinetic equation is very close to the analytical
slip solution (5.64). In the free molecular regime (6 — 0), the expression (5.64)
and the free molecular solution (5.61) coincide with each other and provide the
velocity equal to vy /2. The numerical solution for § = 0.01 is very close to this

1 T T
Kinetic equation—
08 L Slip sc?Iutlon --3—----
T 06 P SO
T 0.4 ot Ol
>
0.2 b fl Ao ; :
0 H
0 0.2 0.4 0.6 0.8 1

v, (X) vy, ——>

Figure 5.5 Velocity profile v,(x) in planar Couette flow for different values of the rarefaction §.
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Figure 5.6 Shear stress P,, in planar Couette flow versus rarefaction parameter §. Solid line -
numerical solution of BGK model [26]; dashed line - slip solution Eq. (5.65); point-dashed line -
near free molecular solution Eq. (5.62).

value. However, in the transition (6 = 1) and near free molecular (6 =0.1)
regimes, the slip solution (5.64) does not provide reliable results.

The shear stress is shown in Figure 5.6 and in Table 5.A.1 as a function of
the rarefaction parameter 8. The slip solution (5.65) works well up to the tran-
sition regime, that is, in the range of § > 1. However, this is a peculiarity of the
planar Couette flow. For other situations, the slip solution works in a smaller
interval of 6.

Exercise 5.1 Consider nitrogen confined between two parallel plates as is
shown in Figure 5.4. Calculate its velocity v,(x) at x = 0 and x = d and the shear
stress P,, under the following conditions: distance between the plates d = 2 mm,
speed of the moving plate v,, = 300 m s}, and gas temperature T = 293 K. Use
M=0.028kgmol™,  =17.5x107° Pass, B, = 1.018. Consider two values of the
gas pressure: (a) p = 0.05 Pa and (b) p = 50 Pa.

Calculation of the most probable speed by Eq. (3.42):

=417 ms™ L

o [2x831) mol ™! K! x 293 K
e 0.028 kg mol ™

a) Calculation of the rarefaction parameter for p = 0.05 Pa using (5.60):

3 0.002 m X 0.05 Pa
T 175x10°Pasx 417 ms!

Since 6 < 1, Eq. (5.61) is used. Then,

= 0.0137.

300
1,(0) = v,(d) = zms =150 ms".
05D -1
p,, = - 205Pas00ms™ ;0003 pa.

1.77 417 ms™!
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b) Calculation of the rarefaction parameter for p = 50 Pa using (5.60):
B 0.002 m x 50 Pa

T 17.5%10°Pasx 417 ms!

Since 6 ~ 10, Egs. (5.64) and (5.65) can be used:

=13.7.

1.018/13.7
0)=300ms! =194ms™ .
v:(0) S 2% 1.018/137 ms
1+1.018/13.7
v,(d) = 300m st + / =281ms™t.
14+2x1.018/13.7
17.5x 10 Pas x 300 ms™?
Py, = - as mS _ _229Pa
0.002m x (1+2 x 1.018/13.7)
54.2

Cylindrical Couette Flow

Consider a gas flow between two coaxial cylinders of radii R; and R, as is
depicted in Figure 5.7. The internal cylinder R; rotates with an angular speed o,
while the external one R; is fixed. Since this flow is considered in the cylindrical
coordinate, the notation P, is used instead of P,;. It is assumed that the surface
speed of the internal cylinder, that is, the quantity wR;, is small compared with
the most probable speed ¢yp. Thus, the small parameter £ = wR; /cmp can be
used to linearize the kinetic equation. The internal cylinder radius R; is assumed
as the characteristic size, so the rarefaction parameter is given as

Rlp

0= .
HNCmp

(5.66)

We will calculate the shear stress P,, and the azimuth bulk velocity v,, which
are determined by the rarefaction parameter § and by the radius ratio Ry /R;. For

@

Figure 5.7 Scheme of cylindrical Couette flow.
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the cylindrical Couette flow, the quantity Py, r2 is constant because of the
momentum conservation law. Here, r is the radial coordinate, that is, the dis-
tance from the cylinder axis.
In the free molecular regime, the kinetic equation (5.23) is solved analytically,
and the shear stress P,, thus reads
oR3
pingry =L
4 \/; Cmp r2
Note that at the internal cylinder surface » = R;, this expression coincides with
that for the planar Couette flow given by Eq. (5.61). The velocity profile is given as

R R R\’
vo(r) = % 1% arcsin (71> —4/1- (—1) , for 6§—0. (5.68)

1 r

for 6§ - 0. (5.67)

It is interesting that the free molecular solution, Egs. (5.67) and (5.68), does not
depend on the external cylinder radius Ry, but it is determined only by the inter-
nal cylinder radius R;.

In the viscous regime, the Navier—Stokes equation in the cylindrical coordi-
nates is solved. The slip boundary condition (5.53) must also be written in the
cylindrical variables (r, ) as

d
a)R1+ﬂpf(ﬁ—V—w), at r =Ry,
dr r
Vy = dvp v (5.69)
Bl | L -2 t r=R,.
Pr ( dr r )’ a r=n
Then the velocity profile reads
1 r Ry /}
v,(r) = oR? {; R (1 - 2R—2§P>] D, for 61, (5.70)

where

, -1
R\ Be[ (R0’
D=¢1—-|— 2— || = 1 . 571
{ (R2> * 6 | \R2 * (6.71)
Equation (5.30) could be written down in the cylindrical coordinate as

dr r

d
Pyy(r) = -1 (ﬁ - Vi’) . (5.72)
Then, with the help of Eq. (5.70), the shear stress takes the following form:

R? 2\/7
P, (r) = 277wr—21D = pfm(r)\T[D, for 5> 1. (5.73)

e
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Figure 5.8 Velocity profiles v,,(r) in cylindrical Couette flow at R, /Ry = 2.

In the limit of high radius ratio, Ry /R; — oo, this solution yields
P, (r) = 2r]a)— {1 + 2'BP} , for 6>1 and Ry, > R;. (5.74)

If Ry/R; > 5, the limit expression provides the shear stress within the uncer-
tainty of 4%.

In the transition regime (6§~ 1), the kinetic equation (5.23) is solved
numerically. The technique and corresponding numerical data can be found
in Refs. [29,30]. The velocity profiles v,(r) calculated from the BGK equa-
tion assuming the diffuse gas—surface interaction are plotted in Figure 5.8
for some values of the rarefaction parameter § at Ry/R; = 2. For § = 10, the
numerical solution is close to that of the slip (5.70). For the small value of
the rarefaction parameter, that is, 6 = 0.1, the analytical free molecular
solution (5.68) practically coincides with the numerical solution. In the
transition regime (6 = 1), the numerical solution cannot be presented by
the slip expression (5.70) and differs significantly from the free molecular
solution (5.68).

The shear stress Py, is plotted in Figure 5.9 and presented in Table 5.A.1. In
the cylindrical Couette flow, the slip solution (5.73) works well only for moder-
ately large values of the rarefaction parameter, say up to 6 = 5. The difference
between the shear stress Py, at R;/R; = 3 and that at R,/R; = 5 is very small. In
practice, it means that the results corresponding to the radius ratio R,/R; =5
can be successfully applied for larger values of this ratio.

It is important to note that in the transition and free molecular regimes, the
relation of the shear stress to the bulk velocity, that is, Egs. (5.30) and (5.72), is
not valid.
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Figure 5.9 Shear stress Py, in cylindrical Couette flow versus rarefaction parameter 6 and radius
ratio R, /R;. Solid line — numerical solution of BGK model; dashed line - slip solution, Eq. (5.73).

Exercise 5.2 Consider nitrogen confined between two coaxial cylinders, as is
shown in Figure 5.7. Calculate its velocity v,(r) and the shear stress P,,(r) at r =
R; and r = R, under the following conditions: radii R = 0.5 cm and Ry = 2R;,
rotation speed @ = 10* Hz, gas temperature T = 293 K. Use M = 0.028 kg mol !,
n=17.5%x107° Pas, B, = 1.018. Consider two values of the gas pressure: (a) p =
0.015 Pa and (b) p = 15 Pa.

The most probable speed is the same as in Exercise 5.1, that is,
Cmp =417 ms™".

a) Calculation of the rarefaction parameter for p = 0.015 Pa using (5.66):

3 0.005 m X 0.015 Pa
T 175x10°Pasx 417 ms!

Since 6 < 1, Egs. (5.67) and (5.68) are used:

= 0.0103.

R; 10* Hz x 0.005
V(R1)=7w 1=—Z m=25ms_1.
? 2 2

10* Hz x 0.005 1
Vp(Ry) = ——— 22 {2 arcsin (5) —V1- 0.25} —2.88ms .

3.14

p @R _0015Pa 10* Hz X 0.005 m
\/E Cmp 177 417 ms-1

Py(Ry) = =1.02x 107 Pa.

R\? 1\?
P,,(Ry) = (R_D P.y(Ry) = (§> x 1.01 X 1073 Pa = 2.54 x 10~* Pa.

b) Calculation of the rarefaction parameter for p = 15 Pa using (5.66):

0.005m X 15 Pa

17.5-10°Pas X417 ms~!
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Since & > 10, Egs. (5.70) and (5.73) are used. First, the factor D is calcu-
lated using (5.71):

o= {i- G [0 ) e

Rl 2 Rlﬁp
R) =R |1-(22) (1-22222)|p
Vy(R) = Ry <R2)( ol
= 10* Hzx 0.005m |1 (= *(1_ 11018 x1.03 = 39.8 ms~!
- ' 2 210.3 DA ’
R\’ B, . 1\%1.018
Ry)=2w( L) 2D =2x10*Hzx0.005m(~) - x1.03
Vo(R2) w<R2> 5 X 2 ™2) 103 %

=254msL.

P, (Ry) = 270D = 2x 17.5 X 10~ Pa's X 10* Hz x 1.03 = 0.361 Pa.

Ry

2 2
1
Pry(Ry) = (E) Pry(Ry) = (5) x 0.360 Pa = 0.0901 Pa.

543
Heat Transfer between Two Plates

Let us again consider two parallel plates fixed at x = 0 and x = d. The upper is
maintained at temperature T, while the lower plate has a different temperature
To + AT as is depicted in Figure 5.10. To apply the linearized kinetic equation, it
is assumed that AT < T. Then, the quantity £ = AT /T is used as the linear-
ization small parameter. The distance d is assumed to be the characteristic size,
so that the rarefaction parameter is given by Eq. (5.60). In this problem, the heat
flux g, and temperature distribution 7T'(x) in the gap between the plates are cal-
culated over the whole range of the gas rarefaction 6. According to the energy
conservation law, the heat flux g, does not depend on the coordinate x.

X A

T0+AT

Figure 5.10 Scheme of heat transfer between two plates.
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In the free molecular regime (5 — 0), the kinetic equation (5.23) can be solved
analytically, see Section 4.2 of Ref. [4]. In case of the diffuse gas—surface scatter-
ing, this solution provides the following expressions for the heat flux and
temperature profile:

AT 1
gm = T o Ty 4+ AT, for 60, (5.75)
\/; T 2
that is, the temperature is constant over the gap and equal to the mean value of
the temperatures of the plates.

In the viscous regime (6 > 1), the Fourier equation with the temperature jump
boundary condition (5.58) is solved. For the planar heat transfer, this condition
reads

dT
—Lrl — at x=d,
T—To= d o r (5.76)
dx

As a result, the temperature distribution is obtained as

-1
1— (LL‘:_T) (1+&) } for &> 1. (5.77)

T(x) = To + AT
() =To+ PR 5

The heat flux is calculated from Eq. (5.34) as

AT (0 2\ ™ 15y (o 20\
qx=17<1+7) =qi 8:5/_ 1+7 s for 6> 1. (578)

It is evident that the heat flux decreases when the temperature jump condition is
applied.

In the transition regime (5 ~ 1), the kinetic equation (5.23) is solved numeri-
cally, see, for example, Refs [31-33]. The temperature profile obtained from the
S model assuming the complete accommodation is plotted in Figure 5.11. At
& = 10, the solution of the kinetic equation is close to the analytical expression
(5.77) obtained on the basis of the Fourier law with the jump boundary condi-
tion. In the free molecular regime, the temperature jump solution (5.77) provides
the temperature value equal to that given by the free molecular solution (5.75).
The numerical solution at § = 0.01 yields practically the same value. However, in
the transition (6 = 1) and near free molecular regimes, the jump solution (5.77)
does not work well.

The heat flux g, is shown in Figure 5.12 and given in Table 5.A.2 as a function
of the rarefaction parameter 6. Like for the planar Couette flow, the temperature
jump solution (5.78) describes well the numerical data up to the transition
regime, 6~1. However, for cylindrical geometry, the jump solution works for a
smaller range of the rarefaction parameter.
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Figure 5.11 Temperature profile T(x) between two plates for various values of the rarefaction .
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Figure 5.12 Heat flux g, between two plates versus rarefaction parameter é. Solid line -
numerical solution of S model; dashed line - jump solution, Eq. (5.78).

544
Heat Transfer between Two Coaxial Cylinders

Consider two coaxial cylinders with radii R; and Ry, as is drawn in Figure 5.13.
The external cylinder is maintained at temperature T, while the internal one
has a different temperature To + AT. Like in the previous case, the parameter
E=AT/T, is used to linearize the kinetic equation. The internal cylinder radius
R; is assumed to be the characteristic size, so that the rarefaction parameter is
given by Eq. (5.66). The quantities of our interest are the temperature distribu-
tion T(r) and the radial heat flux ¢, determined by the rarefaction parameter &
and by the radius ratio R,/R;. Applying the energy conservation law, it is con-
cluded that the quantity g, is constant over the gap between the cylinders.
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Figure 5.13 Scheme of heat transfer between two cylinders.

In the free molecular regime (6§ — 0), the temperature distribution and the
radial heat flux g, are calculated analytically as

AT R
T(r) = Ty + — arcsin <—1>, for 6§ -0, (5.79)
r r

pcmpRlAT
- \/; r To

Note that the free molecular solution is not affected by the external cylinder
radius R;. At the internal cylinder r = R;, the expression of the radial heat flux
(5.80) coincides with the planar heat flux given by Eq. (5.75).

In the viscous regime, the Fourier law is applied with the temperature jump
boundary condition (5.58), which for the cylindrical heat flux is quite similar to
that of the planar heat transfer, that is,

q™(r) = for 6§ —0. (5.80)

T
_Cde_7 at r= R27
T—To= dr (5.81)

dT
AT +{0—, at r=R;.
dr

Then the temperature profile is obtained as

r
é

B={l _+ﬁ(1+ ﬂl (5.83)
Ry ) R, ' ’

The heat flux is calculated from Eq. (5.34):

T(r):T0+AT[1— <lnR—+ )B}, for 5> 1, (5.82)

1

B, for 6>1. (5.84)
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Figure 5.14 Temperature profile T(r) between two cylinders at R, /Ry = 2.

When the external cylinder radius js significantly larger than that of the internal
cylinder, Ry > Ry, then B~ ln% , this means that, the influence of the exter-
nal cylinder does not vanish as one could expect.

In the transition regime (6~1), the kinetic equation (5.23) is solved
numerically. The temperature distribution obtained from the S model
assuming the complete accommodation [34] is shown in Figure 5.14 for
some values of the rarefaction parameter § and at R,/R; = 2. For § =10,
the numerical results are in a good agreement with the jump solution
(5.82). The profile at § =0.1 is close to the free molecular solution (5.79).
In the transition regime (6§ = 1) the numerical solution differs significantly
from both free molecular and jump solutions.

T T TTTTIT T T TTTTIT T T TTTTIT LI
[ [ S—— fuceeenemeenrmeenearsneanfecneeeneancasanenras i
B T —
equation
0.6 Jump------- -2
Sle solution 65
0.4 [ g
1
0.2 [ A — -
O 1 I\IIIHi 1 II\IIIIi 1 I\IIIHi
0.01 0.1 1 10

6 —>

Figure 5.15 Heat flux g, between two cylinders versus rarefaction parameter § and radius ratio
R2/Ry. Solid line — numerical solution of S model [34]; dashed line — jump solution, Eq. (5.84).
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Table 5.3 Function Q(6).

13 1 2 5 10 20
Q 2.72 1.25 0.450 0.212 0.0986

The radial heat flux g, is presented in Figure 5.15 and in Table 5.A.2. In this
case, the temperature jump solution does not provide a good approximation up
to the transition regime. It works well up to reasonably large values of the rare-
faction parameter, that is, for 6§ > 5. Unlike the cylindrical Couette flow, the
dependence of the radial heat flux g, on the radius ratio R,/R; is strong. In
Ref. [34], the following asymptotic behavior of ¢, under the condition 6% >1
was obtained:

AT R Ry

q, = /IT {Q(é) +In ITJ , for 61T1 > 1, (5.85)
where the function Q(6) presented in Table 5.3 was calculated numerically.
Comparing Eq. (5.85) with Eqs. (5.83) and (5.84), one derives the asymptotic
behavior of Q(8) when § — oo, that is, Q(8) = {1 /6.

A comparison of the numerical results based on the CL scattering kernel
(5.47) with experimental data reported in Ref. [14] is performed in Figure 5.16.
The comparison shows that heavy gases such as argon, krypton, and xenon
interact diffusely, that is, 6y = 1 and a,, = 1, with a surface, while light gases such
as helium and neon represent a significant deviation from the complete accom-
modation. The corresponding values of the accommodation coefficients o, and
a, are given in Table 5.2.

© o
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Figure 5.16 Heat flux g, between two cylinders versus rarefaction parameter & for R, /Ry = 65.
Curves - theoretical results [34] based on S model and CL scattering law (5.47); symbols —
experimental data [14].



5.5 Flows Through Long Pipes

Exercise 5.3 Consider helium confined between two coaxial cylinders, as is
shown in Figure 5.13. Calculate the radial heat flux ¢, on the internal cylinder
(r =Ry) under the following conditions: radii R; = 0.1 mm and R, = 100R,,
temperature Ty = 293 K, and temperature difference AT = 5K. Use M =0.004
kgmol™,  =19.7x 107° Pas, A = 0.154 Wm 'K, and {1 = 1.175. Consider
two values of the gas pressure: (a) p = 3 Pa and (b) p = 3 x 10° Pa.

Calculation of the most probable speed by Eq. (3.42):

=1103ms~!.

o _ [2x831)mol” K™ x 293K
e 0.004 kg mol ™!

a) Calculation of the rarefaction parameter for p = 3 Pa using (5.66):

107* m x 3 Pa

= — — = 0.0138.
19.7%x 107" Pasx 1103 ms

Since § < 1, Eq. (5.80) is used:

_ pemp AT 3Pax1103ms™' 5K

= = =31.9W m™2.
4 V7 To 1.77 293K m

b) Calculation of the rarefaction parameter for p = 3 x 10° Pa using (5.66):

107*m x 3 x 103 Pa

19.7x 107% Pas X 1103 m s~!
Calculation of B by Eq. (5.83):
1175 17
B = {In100 + x101 =0.213.
13.8
Since 6 > 1, Eq. (5.84) is used:
11 oK -2
q, =0.154Wm— K — X 0.213 =1.64 kW m™.
107" m

5.5
Flows Through Long Pipes

A gas flow through pipes is a most usual problem that one deals with in vacuum
technology. This section contains analytical and numerical data on flow fields
and mass flow rates for various shapes of pipes over the whole range of the gas
rarefaction and for various conditions at the pipe ends.

5.5.1
Definitions

Consider long pipes with two types of cross sections: (i) rectangular with a
height a and width b, as is depicted in Figure 5.17 and (ii) cylindrical with the
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Figure 5.17 Scheme of flow through a channel.

radius 4, as is drawn in Figure 5.18. In both cases, « is adopted as the character-
istic size so that the rarefaction parameter is defined as

5=—2

= . (5.86)
NCmp

Furthermore, the word “pipe” will be used for all kinds of cross-sectional shapes.
However, the rectangular cross-sectional pipe will be referred to as “channel,”
while the pipe with the cylindrical cross section will be called “tube.”

We assume the pipe length L to be significantly larger than its cross-sectional
size, that is, L > a, b. This assumption allows us to neglect end effects and to
consider only the x-component of the bulk velocity.

A rarefied gas can flow along the pipe due to small longitudinal gradients of
pressure p and temperature T denoted as

_adp _adT

e =_—__ 5.87
pdx’ T de7 ( )

&

respectively. Since the gradients &, and &t are small, the mass flow rate depends
linearly on them, that is,

in= A (_Goey + Gréy), (5.89)

Cmp

where A is the cross-sectional area, that is,

AN =ab, A® = z4® (5.89)

|
DTN ESSPL g
——>
| Q
|
|
N
%
>
=

>

Figure 5.18 Scheme of flow through a tube.
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for channel and tube, respectively. Note that the superscripts ch or tb mean that
the quantity corresponds to channel or tube, respectively. If the superscript is
omitted, the quantity is referred to both channel and tube. The coefficient Gp
describes the gas flow induced by a pressure gradient and is called the Poiseuille
coefficient. A temperature gradient can also cause a flow of rarefied gas. If the
pressure is constant along a pipe, that is, &, = 0, then the gas flows in the direc-
tion of the temperature gradient, that is, from a cold to a hot region. This phe-
nomenon is called thermal creep and the quantity Gr is called the thermal creep
coefficient. The coefficients Gp and Gr are introduced so as to be always posi-
tive. They are calculated from the linearized kinetic equation (5.23) using the
gradients &p and &t as the small parameters of the linearization. The coefficients
Gp and Gy are determined by the rarefaction parameter 6. The details of such
calculations can be found in Ref. [5]. In the following sections, some recom-
mended data on the coefficients Gp and Gt are given.

55.2
Free Molecular Regime

In the free molecular regime (6 — 0), the kinetic equation (5.23) is integrated ana-

Iytically, then the perturbation function is substituted into Eq. (5.26) to calculate
the velocity profile. In case of the channel flow it reads [35,36]

Cm 1 2 2 Cyj +1; Ci+¢
vo(y,2) = —F <_§P+§§T> <§iln - +nln 2|,
=1 j=1

8+y/7 Ci—n; Ci—¢
(5.90)
where
1 iy _ b i Z _ > 2
’h—i"‘(—l);, §j—z+(—1)];7 Cij=/mi +&. (5.91)

The velocity profile for the tube flow is expressed as

/2
vilr) = % (—gp + %ﬁ) L /1 = (rsin ¢)* db. (5.92)

Integrating the velocity over the cross section, the coefficients Gp and Gr
are obtained. As a result, the Poiseuille coefficient Gf,h for the channel flow
reads [36]

Gp = \}; B (m f(g) - #b/a)) + 1nf(§) - m} : (5.93)

where F(x) = x + y/1 +x2 The numerical values of G§' based on this expres-
sion are given in Table 5.4 for some aspect ratios b/a. If the channel is
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Table 5.4 Coefficients G‘rih(zS =0), H, and S versus aspect ratio b/a.

b/a=1 2 5 10 50 100 [+
Gf,h(é =0) 0.839 1.152 1.618 1.991 2.884 3.273 00
H 0.422 0.686 0.874 0.937 0.989 0.994 1.0
S 0.562 0.749 0.899 0.949 0.990 0.994 1.0

sufficiently wide, that is, b > a, then the expression (5.93) is simplified to

1 2 1
ng__on£+{> for b>a (599

\/77: a 2

In the case of a tube, the expression of the Poiseuille coefficient G¥ is quite simple

8
GP=—Fr. 5.95
W (5.95)
The thermal creep coefficient Gt for any kind of pipe is given by
G
Gr="". (5.96)

553
Slip Flow Regime

To calculate the velocity profiles and the coefficients Gp and Gt in the viscous
regime (6 > 1), the Navier—Stokes equation is solved with the velocity slip bound-
ary conditions (5.53) and (5.56). For the channel flow, the velocity profile reads

w2 = -2 P - -3 (;)i cosh Quzja) cos Cpyfa) Py ),

4 pare cosh (u;b/a) 8
CmpﬂT . 1
+ 28 §T7 Hi = (l+2)7[7

(5.97)

where the function s(y,z) is calculated numerically [35] and analytically [37]
from the slip boundary condition. In the case of a wide channel, b > a, the
velocity profile is simplified:

__w [l (N2 P, | cmpPr
w0 =50 1= () + e+ e (598)

For tube flow, the profile is also simple:

Cmpﬂ T
20

Er. (5.99)

_ ) -
vx(r):—% 1- (2) +ﬂgp Ep +
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Integrating the velocity over the cross section of the pipe yields the coeffi-
cients Gp and Gr. The Poiseuille coefficient for the channel flow reads [35,37]

o
G = H+ DS, (5.100)
where
a - tanh (y;b/a) 4 ay\ = tanh (y;b/a)
=162y VEY =-H-2(1-2)Y — LY
L A U DV
(5.101)

Some numerical values of { and S are given in Table 5.4. If the channel is wide,
that is, b > a, then the expression (5.100) is reduced to

5
lim G = et P for b>a. (5.102)

b/a—>oo
For the tube flow, the Poiseuille coefficient is calculated as

5
GY = TR (5.103)

The thermal creep coefficient Gt does not depend on the cross section, and for
both channel and tube, it takes the form

_br
=

Note that expressions (5.100), (5.103), and (5.104) are valid for any kind of slip
coefficients fp and pr, including those obtained for the nondiffuse gas—surface
interaction in Ref. [21] and for gaseous mixtures in Refs [22,24].

Gt (5.104)

554
Transitional Regime

To calculate the velocity profiles and the coefficients Gp and Gy in the transi-
tional regime (6~1), the linearized kinetic equation (5.23) is applied using the
gradients &p and &t as the small parameters. The details of such calculations can
be found in Refs [5,38—-40].

The velocity profile v,(y) for the flow through a wide channel, b >> a, due to
the pressure gradient &p is plotted in Figure 5.19 by solid lines. For the large
value of the rarefaction parameter (6 = 10), the numerical solution is very close
to that of the slip (5.99), plotted by a dashed line. The profile becomes flatter by
decreasing the rarefaction parameter §. However, the magnitude of the bulk
velocity increases when & tends to zero. The similar behavior is observed for the
velocity profile v,(r) in the tube plotted in Figure 5.20 with the difference that for
the small values of the rarefaction parameter § < 1, the speed magnitude practi-
cally does not change and is close to that corresponding to the free molecular
profile given by Eq. (5.92).
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0.5
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Figure 5.19 Velocity profile v,(y) for planar Poiseuille flow.

The velocity profiles due to the temperature gradient &1 are shown in Fig-
ures 5.21 and 5.22 for the flows in channel and tube, respectively. The behaviors
of both profiles are similar to each other. They are more or less flat and their
magnitudes decrease by increasing the rarefaction parameter 8. For § = 10, the
velocity magnitude obtained numerically is close to that obtained from the slip
solutions (5.98) and (5.99) only in the pipe axis. Near the pipe wall, the numeri-
cal profiles differ from the corresponding slip solution.

The Poiseuille coefficient G for the channel flow obtained from the linear-
ized BGK model in Ref. [35] is presented in Figure 5.23 and in Table 5.A.3. For
all values of the aspect ratio b/a, the coefficient G$" has the Knudsen minimum
near the point § ~ 1. For the square channel (b/a = 1), the minimum is rather
shallow, while for large values of the aspect ratio, b/a > 10, the Knudsen

1 T
Kinetic equation
i Slip solution -------
0.8 [\ A R N « Free molecular-------- .
: ™. Solution
T 0.6 [ N
© 0.4 [
~ i
0.2 [
'«.
0 |
0 1 2 3

—Vx (r)/(chmp)—>

Figure 5.20 Velocity profile v(r) for cylindrical Poiseuille flow.
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05 ; T T
0.4 |} .
; §=0.01
03 | 1 0.1 .
y/a i
02 |10 4
kinetic
0.1 equation -
slip
0 i | solution
0 0.2 0.4

Vg (y)/(g'rcw) -

Figure 5.21 Velocity profile v,(y) for planar thermal creep.

minimum is deep. The existence of the minimum is explained by the fact that in
the free molecular regime (6 — 0), there are many particles moving long dis-
tances parallel to the channel walls without undergoing any strikes. They con-
tribute significantly to the mass flow rate. However, when the intermolecular
collisions occur with a small frequency, that is, when § < 1, then the particles
moving along the wall are scattered and they cannot travel a long distance.
Thus, their contribution to the mass flow rate decreases. If the intermolecular
collisions are quite frequent, that is, > 1, the particles begin to drag each other
and the mass flow rate increases by increasing the rarefaction parameter. Thus,
in the transition regime, the flow rate has a minimum because the scattering
effect is still significant, but the drag phenomenon is not so strong.

The slip solution (5.100) presented in Figure 5.23 by dashed lines works
well in the range of § > 10. For the small values of the aspect ratio b/a < 10,
the numerical solution at § =0.001 is close to the corresponding free

1 S T T
3 Kinetic equation
08 F | slip solution -------|
free molecular-------
solution
0.6 | . |
r/a Y
\
04 | |
i
i i
| i
02 F i i
i i
f i
| 1
0 H [ |
0 03 04 05 06

fTCw) I

Figure 5.22 Velocity profile v,(r) for cylindrical thermal creep.
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Figure 5.23 Poiseuille coefficient Gf,h versus rarefaction parameter § and aspect ratio b/a. Solid
line - numerical solution of BGK model [35]; dashed line - slip solution, Eq. (5.100); point-

dashed line — free molecular solution, Eq. (5.93).

molecular value of G given by Eq. (5.93); while for the large values

b/a > 20, the numerical solution is still far from the free molecular value.
The thermal creep coefficient for the channel G is shown in Figure 5.24 and

in Table 5.A.4. It vanishes in the viscous regime (6 — o) in accordance with

2
1.5
S
O]
0

—
Kinetic equation
: Slip solution
:Free molecular solution ===~

100

0
0.001 0.01 0.1 1 10

5—>

Figure 5.24 Thermal creep coefficient Gﬁh versus rarefaction parameter § and aspect ratio b/a.
Solid line — numerical solution of S model [42]; dashed line - slip solution, Eq. (5.104); point line —

free molecular solution, Egs. (5.93) and (5.96).
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Figure 5.25 Poiseuille coefficient G versus rarefaction parameter 8. Solid line - numerical
solution of S model [41]; dashed line - slip solution, Eq. (5.103); point line - free molecular

solution, Eq. (5.95).

Eq. (5.104), and in the free molecular regime it tends to a constant value given by
Egs. (5.93) and (5.96). Note that both coefficients G and G have a singularity,
that is, they tend to infinity, at § > 0 and b/a — oo, which is related to the
degenerated geometry. However, in practice, the aspect ratio b/a is always finite,

so the coefficients G and GS! are never infinite.
The coefficients G and G¥ for the tube flow obtained from the linearized S

model in Ref. [41] are presented in Figures 5.25 and 5.26, respectively. They are
also given in Tables 5.A.3 and 5.A.4, respectively. As for the channel, the Pois-
euille coefficient G¥ also has a small minimum in the transition regime (5 ~ 1).
Its variation near the free molecular regime is very small. For large values of the

& 04 Kinetic equation NV
Slip solution------ - :
Free molecular solution--- i
0.2 [ R R : e NGy —
O 1 L1 \ 1 L1 [ 1 L1 | ~t4
0.001 0.01 0.1 1 10 10

Figure 5.26 Thermal creep coefficient G%b versus rarefaction parameter 8. Solid line — numerical
solution of S model [41]; dashed line - slip solution, Eq. (5.104); point line - free molecular

solution, Egs. (5.95) and (5.96).
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Figure 5.27 Poiseuille coefficient G versus rarefaction parameter 8. Curves - theoretical
results [40] based on S model and CL scattering law (5.47) assuming a, = 1; symbols —
experimental data [13].

rarefaction parameter §, the numerical solution tends to the analytical expres-
sion (5.103). The thermal creep coefficient Gth vanishes in the viscous limit
(0 = o0) according to Eq. (5.104) and it tends to the constant value given by
Egs. (5.95) and (5.96) in the free molecular regime (6 — 0). By combining the
limit solutions (5.95) and (5.103) with the numerical results, the following inter-
polated formula was obtained:

o (5.105)

th_
146’

= —+1.018
P 3y/r 140785

8 1+0.046°"Ins (6

(5+100)
by the least-squares method. It represents the numerical data plotted in
Figure 5.25 and given in Table 5.A.3 with an accuracy less than 0.4%.

Numerical data for a nondiffuse gas—surface interaction can be found in
Refs [39,40] where the CL scattering kernel was applied. A comparison of these
results with experimental data reported in Ref. [13] is given in Figure 5.27. It can
be seen that the experimental values of the flow rate for the light gases (He and
Ne) are in good agreement with the theoretical results corresponding to ¢y ~ 0.9,
while the heavier gas (Ar) undergoes practically diffuse scattering, that is, oy ~ 1.

Flows of gaseous mixtures through long pipes of different cross sections are
considered in Refs [43—45].

555
Arbitrary Pressure and Temperature Drops

In the previous sections, the flow rate was calculated as a function of the local
gradients of pressure &p and temperature &r. However, in practice, these gradi-
ents are unknown, but the pressures and temperatures on the pipe ends are
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Pq P2
T T,

Figure 5.28 Scheme of flows at arbitrary pressure and temperature drops.

measured. In this section, a methodology of flow rate calculations as a function
of these pressures and temperatures is described.

Consider two chambers containing a gas and connected by a pipe of length L,
as is depicted in Figure 5.28. The gas in the left chamber is maintained at a pres-
sure p; and temperature T, while in the right chamber the pressure is p, and
the temperature is T5. The temperature distribution along the channel/tube is
denoted as T (x) and satisfies the conditions T (0) = T, and T (L) = T

To calculate the flow rate between the chambers as a function of the pressures p;
and p, and the temperatures T; and Ty, two rarefaction parameters are introduced:

ap; 5y = ap,

51 = ) )
11Cmp1 1M2Cmp2

(5.106)
where the viscosities #,, 1, and most probable speeds cmp1, ¢mp2 correspond to
the temperatures T and T, respectively. The results are expressed via the
reduced flow rate G related to the mass flow rate as

_ ap;A

G 5.107
oG (5107)

where A is the cross-sectional area.
Since we assume the pipe to be long, L > a, b, the pressure and temperature
gradients are small in each cross section and Eq. (5.88) is valid locally. Combin-
ing this equation with Eq. (5.107) and considering that the gas temperature in
each section is equal to the pipe wall temperature T, the differential equation
for the local pressure p(x) is obtained:
(x) L dT,
T, dx

[Gp(é)Ldp Gr(8) = (5.108)

w(x)
where Gp(6) and G1(5) are functions of the local rarefaction parameter &
expressed via the local pressure p(x) and temperature T(x). In general, this
equation is solved numerically by a finite difference method.

If the flow rate G and the lower pressure p, are known, the integration of Eq.
(5.108) is realized from x = L to x = 0 with the boundary condition p(L) = p,. As
a result of the integration, the pressure p, is obtained. If the pressures p; and p,
are known, the quantity G is fitted to satisfy the boundary conditions p(0) = p;
and p(L) = p,. Some particular examples of application of Eq. (5.108) are given
in the following section.
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Isothermal Flows

First, let us consider an isothermal flow, that is, T, = T, = T. Then the integral
equation (5.108) is simplified and the reduced flow rate G is calculated directly
via Gp as

1™
G(61,8,) =5—1J Gp(5)ds. (5.109)
1)

Once the function Gp = Gp(6) is known, the integration (5.109) is easily per-
formed. Some examples of such integrations can be found in Ref. [46] for tubes
and in Ref. [35] for channels. Substituting (5.109) into Eq. (5.107) and using Eq.
(5.106), the mass flow rate is related directly to the Poiseuille coefficient Gp as

01
i = %J Gp(8)ds5. (5.110)

2

In the case of a square channel b/a = 1 and a cylindrical tube, the approximation

51—8,  [5145
G(81,82) = 16 2Gp( 1; 2) (5.111)
1

provides a good accuracy, that is, the disagreement between the exact integration
(5.109) and approximate formula (5.111) does not exceed 2%. For a channel with
a large aspect ratio, say b/a = 100, Eq. (5.111) provides an accuracy of about 6%.
If the approximation (5.111) is used, the mass flow rate is calculated as

A - A(p, — -~ = O01+96
=M (61— 5)Go(3) = APLTP 6 (5), 5=t (5.112)
L Cp1 L 2
If the pressure drop is small, p; — p, < p;, then the pressure gradient &p is
constant and the mass flow rate is calculated directly from Eq. (5.88):

Alp, —
m=” (p1—p2)

Gp(61), for p,—p, <p;. (5.113)
CmplL

When the flow rate G is known, the pressure distribution along a pipe can be
calculated integrating Eq. (5.108) from any intermediate value of 6, that is,

L 1 rlG (6)ds (5.114)
X=——— , .
G(61,60)81 )5

where &, <6 < 6;. This equation provides the function x = x(5), which is
inverted into & = 8(x). Since p(x)/p; = 6(x)/81, the pressure distribution p(x) is
known. Some typical distributions corresponding to the case 5, = 0 are shown
in Figure 5.29. In the transition regime (6, = 1), the density distribution is linear.
The same distribution is observed in the free molecular regime (6; < 1). For
high values of rarefaction (6§ > 10), the density linearly depends on the coordi-
nate x in the most part of the tube and then it sharply decreases up to zero near
the tube exit.
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Figure 5.29 Pressure distribution along tube at 5, = 0.

Nonisothermal Flows

If the temperatures 7 and 7', are different, Eq. (5.108) should be solved numer-
ically. To calculate the local rarefaction parameter §(x), its dependence on the
temperature should be known, which is determined by the viscosity n = (7).
To calculate §(x), a theoretical expression of the viscosity #(T") can be used, for
example, that obtained on the basis of the hard-sphere potential. Then the local
rarefaction parameter is related to §; as

5x) = 6, T, p(x)

pr Tw(x)

(5.115)

Usually, a chamber with a lower pressure also has a lower temperature, that is,
T, < T;. Two examples of the tube flow corresponding to such a situation,
namely, T,/T1 = 0.5 and T,/T; = 0.25, under the condition 5, = 0 are shown
in Figure 5.30. At large values of &1, the flow rate G increases by decreasing the

3 T T T r1rrr T T T 117177 T T Ty
: : I

1
1
;o
1

1 Ll Ll L

0.01 0.1 1 10

01—

Figure 5.30 Reduced flow rate G versus rarefaction parameter §; at 5, = 0.
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temperature ratio T5/7T;, while near the free molecular regime § < 1 the tem-
perature variation does not affect the flow rate G significantly.

If the pressure and temperature drops are small, that is, p; —p, < p; and
T1 — Ty < T4, then the mass flow rate is calculated directly from Eq. (5.88) as

. aA - T, =T
m:i MGP(él)_ 1 ZGT((SI) ,

cmpl | Py Ty (5.116)
for py—p,<p, and T1-Tr<T;.

Exercise 5.4 Consider helium flowing through a long tube shown in
Figure 5.28. Calculate the mass flow rate 7 of helium under the following condi-
tions: tube radius 4 =0.5 mm, tube length L =10cm, temperatures
T,=T,=293K, and pressure ratio p,/p, =10. Use M =0.004kg/mol,
n=19.7%x10"°Pa s, 6, = 1.018. Consider three values of the upflow pressure:
(a) p; = 1Pa, (b) p; =200 Pa, and (c) p; = 1000 Pa.

Since p,/p, > 1, Eq. (5.112) must be used. The most probable speed is the

same as in Exercise 5.3, that is, Cmp = 1103 m s7L,

a) Calculation of the rarefaction parameters §; and &, for p; = 1Pa using
(5.106):

5% 1074 mx 1 Pa

5 = - — 0.0230,
19.7x107°Pasx 1103 ms!
5, = 6,22 = 0.00230.
P1

Calculation of the average rarefaction parameter:

- 1

5=5(81+6,) =0.0127.
Since 6 < 1, Eq. (5.95) is used to calculate Gp, that is,
Gp(8) = 1.5045.
Then, the mass flow rate 7 is calculated using Eq. (5.112):

314X (5% 10~ m)* x (1 Pa — 0.1 Pa)
a 1103 ms=! x 0.1 m

X 1.5045 = 4.82 x 10" kgs™.

Using Eq. (4.14), the molar flow rate is calculated:

o 4.82x1077 kgs™!

= =1.21x10° mols™!.
2 =M™ 0.004 kg mol™

Using Table 4.1, the flow rate is expressed in other units, for example,

q,v = 2437.4Tmol™" x q, = 2437.4] mol ™' X 1.21 x 10~ mol s™*
=2.95%107° Pam®s~! at 20 °C.
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b) Calculation of the rarefaction parameters §; and &, for p; = 200 Pa using
(5.106):

5% 10~* m X 200 Pa

19.7x 107° Pas x 1103 ms~!

61
8y = 6,22 = 0.460.
Py
Calculation of the average rarefaction parameter:
- 1
o= 5(51 + 52) = 2.53.

Since 5~1, Eq. (5.105) is used to calculate G,(5):

=1.79.

1+ 0.04 x2.53%7 In (2.53 2.53 2.53
G, = 1.5045 n(2.53) ( )

41018 ) ——
1+40.78 x 2.53°8 4 1+2.53

Substituting G, into Eq. (5.112), we obtain

3.14 % (5 x 10~ m)® x (200 Pa — 20 P
i = ( m)” X (200Pa 3) 179 =1.15x 10~ kgs~".
1103ms~! x 0.1 m

Using Eq. (4.14), the molar flow rate is calculated:

n 1.15x10°kgs™!
g, === 285 5 87%107 mols".
M 0.004 kg mol

Using Table 4.1, the flow rate is expressed in other units:

qpy = 2437.4] mol™" x g, = 2437.4] mol ™! X 2.87 x 10" mols™"
=7.00 x 107* Pam?® s~ at 20 °C.

c) Calculation of the rarefaction parameters d; and 8, for p; = 1000 Pa using
(5.106):

_ 5x107*m x 1000 Pa
7 19.7%x10°Pasx 1103 ms~1

1 =23.0.

5, = 6,22 = 2.30.
)21

Calculation of the average rarefaction parameter:
-1
o= 5(51 + 52) =12.7.

Since 6 > 10, Eq. (5.103) can be used to calculate G (5):

127
Gp(3) =~ +1.018 = 4.19.
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Substituting G, into Eq. (5.112), we obtain

_ 3.14% (5% 10~* m)? x (1000 Pa — 100 Pa)
m =

X4.19 =1.34x 108 kgsL.
1103ms' x01m gs

Using Eq. (4.14), the molar flow rate is calculated:

n  1.34x108 kgs™!
g, = =222 TBS 335510 molsl.
M 0.004 kg mol

Using Table 4.1, the flow rate is expressed in other units:

q,v = 2437.4Jmol™" X q, = 2437.4] mol ™' X 3.35 X 107° mol s~
=8.16 x 107> Pam®s™" at 20 °C.

5.5.6
Variable Cross Section

Equation (5.108) can be generalized for a pipe of variable cross section. For the
sake of simplicity, only the tube flow is considered here. It is assumed that the
tube radius gradually depends on the x-coordinate, that is, the derivative
da(x)/dx is sufficiently small. In this case, the reduced flow rate G® is related to
the mass flow rate as

3
i = 4P G®, (5.117)
Lcmpl

where a; = a(0) is the tube radius at its entrance. Then, with the help of Eq.
(5.88), we obtain [47]

th
P pdx Tr, dx

_r® | T {“(’C)r(_etbfd_pmtb L dTW) (5.118)

B P T (x) 61—1

Some numerical examples calculated in Ref. [47] on the basis of Eq. (5.118) are
given in Table 5.A.5, where a conical tube is considered, that is,

a(x) =a, + %(ﬂz —ay), (5.119)

a; = a(L) is the tube radius at its exit. In the case of isothermal flow, that is,
Ty =T, = T,, the integration (5.118) can be performed analytically for such
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a tube in the free molecular (61,8, < 1) and viscous regimes (51,6, > 1),
that is,

16 2
Gb = 10 (@/am) <1 —@>,for si<1 and 6 <1, (5.120)
3yrlta/ar ' p

35 3 2
Gt =29 (a2/a1) - 1—(%) , for 8;>1 and 6,>> 1.
8 1+ay/a) + (ay/ay) 1

(5.121)

These expressions give an idea about the influence of the radius variation.
Substituting (5.120) and (5.121) into Eq. (5.117), the mass flow rate is
obtained as

= 16\/;(‘11“2)2(171 - p,)

, for 6«1 and 6 < 1. 5.122
3 Cmpl(ﬂl +ay)L ! 2 ( )

3 30,2 _ 2
=3 @B s o and sy 1, (5.123)
8 nemp1 (@i + aras + a3)L

in the free molecular and viscous regimes, respectively.

In practice, one deals frequently with the situation when §; > 1, §; < 1, and
ay > a;. The dependence of G™ on the rarefaction parameter §; and radius ratio
ay/a; at 5, =0 is shown in Figure 5.31 and Table 5.A.6. It can be seen that at
the large values of the ratio a,/a;, the flow rate G® is proportional to this ratio,

400 T |||||||| T T TTTTIT T IIIHII} '}"'
a,/a; =5 :

200

100

G tb 5

10 1 IIIIIIIi 1 IIIIIIIi 1 IIJJIIIi TR
0.01 0.1 1 10

Oy—

Figure 5.31 Reduced flow rate Gt for a tube with variable cross section versus rarefaction
parameter §; at 6, = 0.
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that is,

P for s (5.124)
ay ay
Such a proportionality is confirmed by Egs. (5.120) and (5.121). Thus, for large
values of a,/a,, the quantity G can be calculated from the data corresponding
to ay/a; = 40, using the correction factor 4—1();’—?.
5.5.7
Thermomolecular Pressure Ratio

The thermal creep causes another interesting phenomenon called the thermo-
molecular pressure ratio (TPR). Let us assume the system (pipe + chambers)
shown in Figure 5.28 to be closed and the temperatures 7, and T, are main-
tained different. Then the pressures p; and p, are established so that the net
flow rate through the pipe is zero. It happens when the thermal creep caused by
the temperature difference is compensated by the Poiseuille flow driven by the
pressure drop. The established pressure ratio p,/p, in this state can be related
to the maintained temperature ratio as

T 4
P <—1) , (5.125)
P2 T,

where y is the exponent of the TPR. The knowledge of this quantity is important
if a pressure is measured not directly in a vacuum chamber, but a gauge is con-
nected with the chamber by a pipe. Frequently, in such situations, the gauge
temperature can be different from that of the chamber.

If the temperature drop is small, then the TPR exponent is given as

G
y=—_t, for |T\-T,l<Ti. (5.126)
Gp
For an arbitrary temperature drop, Eq. (5.108) is used assuming G = 0, that is,
d Gt(0
b _ p GO (5.127)

dT,, ~ Ty Gp(5)’

where the local rarefaction parameter & is determined by the local pressure p and
temperature 7. In general, this differential equation is solved numerically.
Once p; and p, are known, the TPR exponent is calculated using Eq. (5.125). It
is interesting that the TPR exponent y does not depend on the temperature dis-
tribution T, but it is determined only by the rarefaction parameter 6; and tem-
perature ratio T/ T1.

In the free molecular limit, §; < 1 and &, < 1, the integration of Eq. (5.127)
can be performed analytically. Since for the diffuse gas—surface interaction Gt =
Gp/2 for 6 — 0,

1

y = 2 for 5«1 and d <1 (5.128)
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for any temperature ratio 77/7T, and for any kind of pipe. If one calculates Gp
and Gt through a long pipe in the free molecular regime assuming the diffuse-
specular gas—surface interaction (5.46), one also obtains the relation Gt = Gp/2
at any value of the coefficient a. Thus, the value given by Eq. (5.128) is valid for
the diffuse-specular reflection too.

According to Ref. [48], the experimental value of y for krypton is exactly 1/2.
However, for helium, the experimental value of y is lower than 0.5, namely, y = 0.4
and 0.464, according to Refs [49] and [48], respectively. Such a deviation from the
theoretical value is explained by the nondiffuse interaction of helium with a pipe
wall. However, an application of the diffuse-specular kernel (5.128) provides the
value y = 1/2 for any value of the accommodation coefficient a, while applying the
CL kernel (5.47) one can obtain a TPR exponent y lower than 1/2. This fact indi-
cates that the last kernel (5.47) provides a more physical gas—surface interaction.

In the viscous regime, §; > 1 and &, > 1, the ratio G1/Gp has the order 572
and then

1
7 7 for §,>1 and 6> 1, (5.129)
1

where the proportionality coefficient is determined by the thermal slip
coefficient fr and by the cross-sectional shape of the pipe.

An empirical formula of the TPR for tube based on experiment data for sev-
eral species of gases was proposed in Ref. [50]. Considering that the experimen-
tal temperature difference was sufficiently small, namely, (T, — T1)/T; = 0.07,
the empirical formula representing all gases used in the measurements [50] can
be written in our notations as

y=05 (1 +0.09206 + 0.5185 + 0.31751/2) g
(5.130)
for tube at M < 1.
T,

The theoretical results [41,42] on the exponent y corresponding to the diffuse
scattering law are plotted in Figure 5.32 for both tube (solid line) and channel
(dashed line). It can be seen that in the transitional and viscous regimes, the TPR
exponent is affected by the pipe shape and by the value of the temperature ratio
T,/T;. The empirical formula (5.130) is plotted in Figure 5.32 by the pointed
line and represents good agreement with the theoretical results [41]. For the large
temperature ratio (75/7T = 3.8), the theoretical results [41] agree well with the
experimental data [49] for the gas helium presented in Figure 5.32 by circles.

The theoretical values of the exponent y for tube based on the S model and CL
scattering law obtained in Ref. [40] are shown in Figure 5.33 together with the
experimental data reported in Ref. [51]. It is evident that the heavy gas (Xe)
undergoes the complete accommodation on the tube wall because its experi-
mental values of y coincide with the theoretical results for oy = 1. The experi-
mental values of y for the lighter gas (Ar) are in agreement with the theoretical
results for oy = 0.94, that is, the deviation from the diffuse scattering is weak.
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Figure 5.32 TPR exponent y versus rarefaction  with diffuse scattering; pointed line — empirical
parameter &;. Solid line — theoretical results [41]  formula (5.130); circles — experimental data for
for tube with diffuse scattering law; dashed line  tube [49].
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Figure 5.33 TPR exponent y versus rarefaction parameter §; for tube at T,/T; = 1. Curves -
theoretical results [40] based on CL scattering law (5.47) assuming a, = 1; symbols — experi-
mental data [51].

The light gases He and Ne represent a stronger deviation from the diffuse scat-
tering, that is, oy = 0.9 and 0.82, respectively.

5.6
Flow Through an Orifice

An orifice flow represents a limit opposite to the long pipe, that is, here an infin-
itesimally thin partition separating chambers is considered. The chambers
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P4 P2

Figure 5.34 Scheme of orifice flow.

contain a gas at the same temperature T, but at different pressures p; and p,.
Without loss of generality, it is assumed that p, < p;. The chambers are con-
nected by a circular orifice, which allows the gas to flow as is shown in
Figure 5.34. In practice, one is interested in the mass flow rate 7z through the
orifice determined by the pressure ratio p,/p; and by the rarefaction parameter
01 calculated via the pressure p; and via the orifice radius a as

_ap;

5= .
NCmp

(5.131)
In the free molecular regime (6; = 0) at p,/p; = 0, the mass flow rate is calcu-
lated via the molecular fluxes given by Eq. (5.14):

\/7vm2

mo = 7m2ij1 =~+——p,, for 6, -0 and P 0, (5.132)
mp P

where j, corresponds to the pressure p;. In case of arbitrary pressure ratio p,/p;,

the mass flow rate is calculated as the difference of two opposite fluxes and reads

m= zmzmp(j1 —Jo) = rho( —%), for 8, —» 0, (5.133)
1
where j, corresponds to the pressure p,.

References [52,53] report numerical data on the flow rate through an orifice
obtained by the DSMC method based on the hard-sphere potential. Simulations
of the same flow based on ab initio potentials [54] showed that the influence of
the molecule model does not exceed 1.5% so that the hard-sphere model pro-
vides reliable results for orifice flows. The numbers of particles and samples
were sufficient to reduce the statistical scattering of the flow rate up to 1%. The
dependence of the reduced flow rate 71/71y on the rarefaction parameter §; for
Ppy/p1 =0,0.1, 0.5, and 0.9 are represented in Figure 5.35. The numerical
results are in good agreement with the corresponding experimental data [55,56].
In the free molecular regime (6; = 0), the numerical value of 71/#1, tends to its
theoretical expression (5.133). For §; > 100, the variations of the flow rate are
within the numerical accuracy for all pressure ratios considered here. Therefore,
the data presented here cover the whole range of the gas rarefaction 0;.
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Figure 5.35 Flow rate m through an orifice versus rarefaction parameter ;. Open symbols —
DSMC simulation [52,53]; filled symbols — experimental data [56]; crosses — experimental
data [55]; dashed line — empirical formula, Eq. (5.134) [57].

The following empirical formula was proposed in Ref. [57] for outflow into
vacuum, p,/p; = 0:

1 +4.559/8; +3.094/5? 12 (5.134)
and 0 <6; <20,

0.4733 4+ 0.6005/4/6
rh=rh0(1+ + /\/T>, for &—>0

which works well in the range of 0 < §; <20. This formula is plotted in
Figure 5.35 by the dashed line.

In many practical applications, the flow rate is needed only for small values of
the gas rarefaction, §; < 1. Under such condition, Eq. (5.133) is corrected by a
linear term, that is, the flow rate can be written as

= rho( —@> 1+A8) for & <1. (5.135)
P

The values of the constant 4 are given in Table 5.5 for some pressure ratios
P»/p;- These values were obtained by the least-squares method on the basis of
the numerical results for 0 < p,/p; <0.9 and on the basis of the experimental
data [58] for p,/p, ~ 1.
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Table 5.5 Coefficient A in Eq. (5.135) versus p,/p;.

29 0 0.1 0.5 0.9 1
A 0.13 0.15 0.23 0.31 0.34
5.7

Modeling of Holweck Pump

In this section, the main ideas of how complex flows that usually occur in diverse
kinds of pumps are modeled. Such flows can be calculated employing a superpo-
sition of several solutions of the kinetic equation. The Holweck pump considered
as an example is composed of two coaxial cylinders. One of them has grooves in
a spiral form and the other is smooth. A rotation of the smooth cylinder causes a
gas flow from a chamber of low pressure to that of high pressure, that is, the
pumping effect is induced. Generally, the gas flow through such a pump is three
dimensional and requires a lot of computational effort. To reduce the effort, a
two-dimensional flow is considered, that is, the groove curvature and the end
effects are neglected. More exactly, a plane with regularly distributed grooves is
considered. Another surface, which is smooth, moves to the left over the grooved
surface and causes an upward gas flow, as shown in Figure 5.36a. The cross sec-
tion of one groove, that is, AA, is depicted in Figure 5.36b.

The problem solution includes two stages. In the first stage, four indepen-
dent problems are solved over the whole range of the gas rarefaction: (i) Lon-
gitudinal Couette flow, that is, the gas flow due to a surface motion along the
z-axis. The coordinate system (x,y,z) is shown in Figure 5.36b. (ii) Longitudi-
nal Poiseuille flow, that is, the gas flow caused by a pressure gradient along the
z-axis. (iii) Transversal Couette flow, that is, the gas flow due to a surface
motion along the x-axis. (iv) Transversal Poiseuille flow, that is, the gas flow
caused by a pressure drop in the x-direction through a pair of groove and
ridge. The solution to these four problems is determined by the grove and ridge
sizes and by the local rarefaction parameter 6. Usually, this stage takes a long
computational time.

In the second stage, a linear superposition of the four solutions obtained
previously is realized in accordance with the methodology described in

TV

74

Y x

Gas flow —>
\

—
L

(b)

Figure 5.36 Scheme of pump and cross section of groove AA.
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Figure 5.37 Limit compression pressure ratio K, versus fore-vacuum rarefaction & [60]. Lines —
theoretical results; symbols — experimental data.

Refs [35,41,42,46,59,60]. This stage does not require much computational effort
and allows us to easily change many parameters such as groove inclination, fore-
vacuum and high-vacuum pressures, angular velocity of rotating cylinder, species
of gas, temperature of the gas, and so on.

Applying the present approach, the compression ratio and pumping speed
were calculated. The results related to the limit compression ratio are shown in
Figure 5.37, from which it can be seen that the numerical results are in fine
agreement with the experimental data. The results for the pumping speed are
given in Figure 5.38 in terms of the dimensionless pumping speed defined as

S
G= m, (5.136)
where S is the pumping speed, a is the height of the groove, and N, is the num-
ber of the groove. Physically, G is the dimensionless flow rate through one

T IIIITII[ T IIITIH[ T T T TTTTT

0
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Figure 5.38 Dimensionless pumping speed G versus high-vacuum rarefaction &y, [60]. Lines -
theoretical results; symbols — experimental data.
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groove in the vertical direction, see Figure 5.36a. A comparison of the numerical
results on G with experimental data shows the efficiency of the methodology
based on the superposition of several solutions obtained from the linearized
kinetic equation. The details of the numerical calculations and measurements
can be found in Ref. [60].

5.8
Appendix A

5.8.1
Tables

Table 5.A.1 Shear stress in Couette flow versus rarefaction parameter § [26,30].

Planar P,,/P™ Cylindrical P,w/Pﬁ’;‘
Ry _

o = 2 3 5

0.01 0.9914 0.9988 0.9987 0.9987
0.1 0.9258 0.9883 0.9871 0.9866
1.0 0.6008 0.8811 0.8669 0.8601
2.0 0.4437 0.7725 0.7465 0.7338
5.0 0.2523 0.5458 0.5076 0.4874
10.0 0.1473 0.3540 0.3180 0.3057
20.0 0.0805 0.2080 0.1816 0.1750

Table 5.A.2 Heat flux versus rarefaction parameter 6 [33,34].

Planar Cylindrical g,/g™

5 q./q™ Ry/Ry =2 5 10 20 65

0.01 0.9939 0.9982 0.9965 0.9954 0.9942 0.9920
0.1 0.9485 0.9818 0.9653 0.9532 0.9410 0.9190
1.0 0.7092 0.8393 0.7191 0.6429 0.5753 0.4823
2.0 0.5736 0.7219 0.5493 0.4576 0.3885 0.3065
5.0 0.3740 0.5050 0.3121 0.2387 0.1921 0.1437
10.0 0.2390 0.3334 0.1788 0.1313 0.1034 0.0758

20.0 0.1390 0.1973 0.0960 0.0688 0.0536 0.0389
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Table 5.A.3 Poiseuille coefficient Gp versus rarefaction parameter § [35,41].

Channel G&" Tube GP
1 bla=1 2 5 10 20 50 100 0
0 0.8387 1.152 1.618 1.991 2.373 2.884 3.273 <) 1.505
0.001 0.8373 1.150 1.612 1.978 2.344 2.798 3.015 R 1.501
0.01 0.8315 1.137 1.577 1.910 2.217 2.551 2.695 3.050 1.480
0.02 0.8261 1.125 1.549 1.858 2.130 2.400 2.510 2.711 1.464
0.05 0.8124 1.099 1.492 1.759 1.971 2.149 2.214 2.302 1.434
0.1 0.7958 1.073 1.437 1.665 1.826 1.943 1.983 2.033 1.410
0.2 0.7766 1.046 1.379 1.563 1.678 1.752 1.776 1.808 1.391
0.5 0.7607 1.026 1.319 1.454 1.526 1.569 1.580 1.602 1.401
1.0 0.7660 1.041 1.315 1.424 1.480 1.513 1.520 1.539 1.476
2.0 0.8076 1.115 1.391 1.491 1.541 1.571 1.577 1.595 1.680
5.0 0.9846 1.413 1.753 1.870 1.929 1.962 1.973 1.991 2.367
10.0 1.314 1.955 2437 2.599 2.683 2.729 2.753 2.769 3.575
20.0 2.000 3.077 3.864 4.121 4.267 4.341 4.368 4.397 6.049
Table 5.A.4 Thermal creep coefficient Gt versus rarefaction parameter & [41,42].

Channel G" Tube G®
5 bla=1 10 20 o0
0 0.4193 0.9955 1.186 3] 0.7523
0.001 0.4181 0.9839 1.162 1.855 0.7486
0.01 0.4110 0.9165 1.044 1.246 0.7243
0.02 0.4037 0.8658 0.9662 1.078 0.7042
0.05 0.3857 0.7695 0.8291 0.8719 0.6637
0.1 0.3637 0.6763 0.7089 0.7320 0.6210
0.2 0.3390 0.5814 0.5968 0.6105 0.5675
0.5 0.2953 0.4490 0.4553 0.4620 0.4779
1.0 0.2545 0.3553 0.3593 0.3633 0.3959
2.0 0.2070 0.2667 0.2693 0.2719 0.3016
5.0 0.1366 0.1598 0.1609 0.1621 0.1752
10.0 0.0868 0.0956 0.0961 0.0966 0.1014
20.0 0.0495 0.0522 0.0524 0.0526 0.0543




References | 225

Table 5.A.5 Reduced flow rate G for conical tube versus rarefaction parameter &, and pres-
sure ratio p,/p; at ax/a; = 10 and T = const. [47].

th

P po/py =0 0.01 0.1 05 0.9

0.0 27.35 27.08 24.62 13.68 2.735
0.01 27.04 26.76 24.29 13.42 2.672
0.1 25.95 25.67 23.21 12.78 2.547
1.0 25.99 25.73 23.57 13.80 2910
10.0 52.29 52.17 50.66 35.56 8.531
100.0 354.5 354.2 350.1 263.1 66.21

Table 5.A.6 Reduced flow rate G for conical tube versus rarefaction parameter &; and radius
ratio a,/a; at 5 = 0 and T = const. [47].

Gt
5 az/ay =5 10 20 40
0.01 12.39 27.02 56.54 115.6
0.02 12.29 26.79 56.07 114.7
0.05 12.09 26.35 55.13 112.7
0.1 11.90 25.93 54.25 110.9
0.2 11.72 25.54 53.45 109.3
0.5 11.63 25.34 53.03 108.4
1.0 11.90 25.96 54.35 111.1
2.0 12.89 28.18 59.03 120.7
5.0 16.64 36.59 76.79 157.1
10.0 23.63 52.25 109.8 224.8
20.0 38.34 85.15 179.2 367.0
50.0 83.32 185.6 391.0 800.9
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Sorption and Diffusion

Dr. Karl Jousten

Physikalisch-Technische Bundesanstalt, Vacuum Metrology, Abbestr. 2-12, 10587, Berlin, Germany

This chapter explains how molecules stick to a surface and travel through a solid
(the material of a vacuum vessel), and furthermore, what consequences this has
for the pressure inside a vacuum chamber.

6.1
Sorption Phenomena and the Consequences, Definitions, and Terminology

Atoms or molecules from the gas or vapor phase impinging on a solid surface,
referred to as adsorbent (Figure 6.1), remain at the surface with a sticking proba-
bility s < 1, in other words, are reflected with a probability (1 —s). The sticking
adparticles, termed the adsorbate, adhere to the surface either due to dipole
forces or van der Waals forces (physisorption), or due to covalent linkage (atomic
bonds, chemisorption). The binding energy resulting from these forces is referred
to as adsorption energy E,q (or adsorption heat).

Figure 6.2 shows the potential curves of a molecule A, and of two molecules 2A
with respect to the distance from the surface. For physisorption, E,q = E;. In cer-
tain cases of chemisorption of molecular adsorbates (e.g., for H,, O,, N, but not
CO, COy), an energy barrier termed activation energy E, must be surpassed [1].
At this point, the considered molecules dissociate into atoms (xA; — 2A), which,
subsequently, are chemisorbed. Here, the energy released corresponds to the sum
of the activation energy and twice the adsorption energy (En + E.) (Figure 6.2).
This type of activated adsorption occurs only for molecules carrying sufficient
kinetic energy in the direction perpendicular to the surface when they are still
distant, Ey, 1 > Ea. For adparticles to desorb, expenditure of the desorption
energy Eges is required, which is equal to the adsorption energy E,q. Molar
desorption energies for physisorption are below Eges ~ 40 k] mol™ (0.4eV per
particle), and for chemisorption, in the range of Ege ~ 80 to 800k] mol ™
(0.8—-8 eV per particle). Thus, bonds due to chemisorption are approximately 10
times stronger than bonds produced by physisorption. Table 6.1 lists a number of
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Gas, adsorbate 2 ?

Adsorbate

Solid
adsorbent

? Desorption

Figure 6.1 Concepts of sorption processes. White circles represent atoms in the solid. Gas
atoms or molecules (gray circles) impinge on the surface and subsequently adsorb, diffuse

(become absorbed), or desorb.
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Figure 6.2 Potential of a molecule A, or two
atoms 2 A at a distance from the surface of

an adsorbent. The surface holds a physisorbed
molecule A, with the energy E.q = E, ata
distance of approximately 0.3 nm (varying
between 0.2 nm and 0.4 nm depending on
the combination of adsorbate and adsorbent

species). Near the surface, the energy Egjs
required for the dissociation A, — 2A is
reduced considerably to E,. If this activation
energy E, is overcome, the molecule dissoci-
ates and both atoms A are chemisorbed with
the energy E. to the surface at a distance of
0.15nm.
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Table 6.1 Adsorption energies E,q equal to desorption energies Eqes of adsorbate for selected gas species on some vacuum technologically relevant substances
ineV (1eV£96.2k) mol™) for 0 = 0.

Adsorbates Adsorbents
Ti Fe Ni Pd Ta w Au Pt Al6063 Stainless steel
Hy/H 1.4 1.3 09-1.1 2.0 1.9 1.7
0,/0 10.8 5.5-6.2 55 24-29 9.5 8.4-9.6
N,/N 0.32/0.29
cO 6.7-6.9 2.0 1.3-1.8 18 58 3.6 1.5-22
CO, 7.1 2.6 1.9 7.3 4.7
H,O 1.1 0.82-1.05 0.89-1.08

Due to measuring uncertainty and the specific condition of the surface (e.g., crystal plane, steps), values are limited to two decimals. Ranges are listed for values scattering

any greater.
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Adsorption M Absorption

Physisorption Chemisorption

Monolayer Multilayer

Figure 6.3 Taxonomy of sorption processes.

values for E . If the adparticles react chemically with surface particles and create
a chemical, stoichiometric bond, values of adsorption energy rise to those of
chemical reaction energies, which in fact are slightly above chemisorption values.
This type of reaction requires surface particles to rearrange.

Also, adparticles can diffuse into the adsorbent: they dissolve in the solid. This
process is named absorption or occlusion. The term sorption is used when infor-
mation regarding the relative portions of both effects, adsorption and absorption,
is unavailable or concealed (see also diagram in Figure 6.3).

The time constant with which occluded gas emerges to vacuum from a solid is
considerably higher than the time constant with which surface adsorbed gas of
the same type emerges. This process is referred to as outgassing, and is covered
separately in Section 6.3. To simplify matters, the physically distinguished pro-
cesses of desorption (from the surface) and outgassing (from the solid) are often
subsumed under the term desorption. This is because a particle dissolved in the
solid initially has to travel to the surface, quasi adsorb from within, to subse-
quently desorb. However, we will distinguish desorption and outgassing. The
superordinate degassing for both concepts should be avoided. It usually refers to
a controlled removal of dissolved gas from solids or liquids.

In the adsorption phase, adparticles can be close packed in a single layer
(Figure 6.4). In this monomolecular layer, the number density per unit area

o)

Figure 6.4 Close-packed atoms at a surface. The shaded area indicates the smallest possible
rectangular cell with surface area A and the two sides a and b. b = 2r and according to the
Pythagorean theorem, a = 4/3r2, and thus, A = 24/3 r2.
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Hmono 18
- N
nmono:=z . (6.1)

N denotes the number of adjacent particles on the required area A. If less adpar-
ticles adhere to the surface than in the monomolecular case, that is, # < 7imeno,
we define surface coverage

g=—"_ (6.2)
annO
Example 6.1

According to Table A.9, the radius of a typical adsorbed molecule or atom
r=1.6x10"""m. In closest packing, a particle (see Figure 6.4) requires the area
A =24/3r2 Thus, the number density of the monolayer (monomolecular, mon-
atomic) is

Amono = 1/A =[24/3(1.6 X 107°°m?] ' = 1.13x 10" m™2 ~ 10'® cm?.

For monatomic coverage, approximately 10'° particles lie on a geometric sur-
face area of 1 cm? This important characteristic value of monomolecular cover-
age should be noted. However, it should be perceived that a technical surface
can have a significantly larger area than a geometric surface because it features
many steps and tips on the microscopic scale (from only one up to many inter-
atomic distances). This issue is significant in ultrahigh-vacuum technology.

If an additional adlayer forms on top of the monolayer, the adsorption forces on
this succeeding layer also include forces between identical adsorbate particles. For
subsequent layers, these forces are nearly exclusively relevant. Thus, the desorption
energy of particles in these layers approaches the evaporation heat A/ of the
solid adsorbate for static adsorption layers, or of the liquid adsorbate for adsorp-
tion layers in motion (e.g, Ak(water, 0°C) = 45.00 k] mol™'£0.47 eV /molecule,
Ah(ice, 0°C) = 50.86 k] mol™'20.53 eV/molecule).

If the number density #, that is, pressure, of the adsorbate species is high in
the gas phase, many superimposed adsorption layers can form. This process is
called condensation (see also Section 3.5).

The phenomena of sorption and condensation are important throughout
the entire pressure range in vacuum technology. Sorption pumps (Chapter 11),
sputter ion pumps (Section 11.4), condensers (Chapter 8), and cryopumps
(Section 12.4) utilize adsorption and condensation of gas molecules in order to
pump. In non-evaporable getter (NEG) pumps (Section 11.3.2), diffusion of
adsorbed particles is used to activate the pumps.

When a vented high-vacuum vessel is evacuated, adsorbed gas particles can
delay or even practically prevent a certain pressure to be obtained. Gases that
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are adsorbed or absorbed (e.g., oxygen, nitrogen, water vapor) at higher pressure
(e.g., when exposed to air or during ventilation) are released at different rates in
a vacuum, depending on the value of desorption energy. Such desorbed mole-
cules are potential sources of contaminants and impurities, an important issue
in semiconductor industry. For example, the effect of oxygen atoms in metalliza-
tion processes is devastating when they influence electric conductivity. The
smaller the structures in integrated circuits (IC), the fewer harming particles are
necessary to cause an IC to fail.

In particle accelerators, residual gas particles limit the lifetime and quality of
the particle beam. In gravitational-wave detectors, they decrease the resolution
with which changes of length are detected in Michelson interferometers.

In vacuum measurement, adsorption can influence results if a measuring
device is sensitive to surface effects (e.g., ionization vacuum gauges).

Example 6.2

A monolayer of nitrogen is adsorbed at the interior surface As of a spherical ves-
sel, radius r, volume V =1 7. 23
According to Example 6.1, the area As = 4z r*> = 4x (41” v) = 485 cm? carries

Nag = Amono As = 5 x 10'” molecules of nitrogen.

If they desorb entirely (e.g., due to rising temperature), the partial pressure of
nitrogen in the vessel, according to Eq. (3.19), at ambient temperature is

_ Nag 5%10"7-1.4x 10723 J-300K

— ~ -2 _
pNZ—TkT_ 103 i K ~2Nm™ =2Pa.

The reactions of sorption and outgassing of gas and vapor at solid surfaces are
very complex. Here, they are discussed only with the simplest models in order to
provide basic understanding of vacuum technological processes.

6.2
Adsorption and Desorption Kinetics

6.2.1
Adsorption Rate

Equation (3.48) describes the particle flow density of gas or vapor (temperature
T) onto the surface of an adsorbent (temperature Tv) where the particles
adhere with the sticking probability s. The sticking probability of a particle
depends on whether the particle reaches a free adsorption site at the surface,
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Table 6.2 Sticking probabilities sy of selected gas species on tungsten at 300 K. Ranges repre-
sent the values on different types of single- and polycrystalline tungsten surfaces as listed by a
number of references. s is independent of 8 in the range 8 = 0 to 6 = 6. (see Eq. (6.3)).

Gas species So A

H, 0.08-0.30 0.26—-0.50
CcO 0.18-0.97 0.30-0.66
N, 0.11-0.55 0.14-0.50
O, 0.14-0.15 00.4-0.70
From [2].

and, if it does, how high the probability of resting is at the site. This probability
is denominated so. It is temperature dependent, so(T', Tw), particularly when the
adsorption requires activation energy. However, it was shown that this is rarely
the case, except for dissociating adsorption, or that the temperature dependence
is only weak. Thus, to simplify, sy is assumed to be temperature independent,
that is, constant:

s =50£(0). (6.3)

Table 6.2 lists a number of values for sy on tungsten at 300 K.
Langmuir formulated the simplest coverage dependence of s by assuming that
particles are adsorbed only if they strike a vacant site, that is, if

fO)=1-9, (64)

as long as no dissociation occurs. If dissociation does take place, all # dissocia-
tion fragments require a vacant site and the probability drops with the nth power
of (1 — 6). However, experiments show that s, in contrast to Langmuir’s assump-
tion, is practically independent of coverage in the range of 6 =0 to approxi-
mately 0. = 0.3-0.4 (Table 6.2). In spite of this, Langmuir’s coverage expression
is often a very useful approximation. With Langmuir’s assumption, the adsorp-
tion rate or adsorption flux density per unit area is

X nc
Jagd = So(1 = 9);- (6.5)

6.2.2
Desorption Rate

Adparticles adsorbed at the surface oscillate with a frequency in an order of
magnitude vy & 1013 571, that is, with an oscillation period of 7y ~ 10713 5. For
desorption, they must carry kinetic energy Eyi, > Eges. If the activation energy
for adsorption is zero, then Eges = E,q. According to Boltzmann, of n particles,
only a portion A7 = 71 exp(—Eqes/(RTvw)) meets this requirement so that the
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surface-desorption rate or desorption flux density,

Jies = % = —vp An = —yy nexp <— ;ﬁ) , (6.6)
incorporates the product of the particle number A7 with sufficient energy E e
and the frequency vy at which they oscillate to the outside, that is, away
from the surface. Equation (6.6) is known as the Polanyi—Wigner equation. The
frequency vy is estimated by equating the energy hv, of the oscillator with the
thermal energy kT:

_kT

Tk

At T=296K, it is v = 6.2 x 10" s7! ~ 101 571,
Among the adparticles, some remain at the surface for a longer period of time

before they desorb, whereas the residence time for others is low. According to
Eq. (6.6), the average of all residence times, the mean residence time 7, is

E
T = Tp exp (R;"e\;) . (6.8)

Vo (6.7)

Example 6.3

The molar desorption energy Eges of H,O on stainless steel or aluminum is
approximately 96kJ mol™' (see also Table 6.1). Thus, at room temperature
(Tw = 300 K), the exponential factor in Eq. (6.8) & = exp(g259%9-) = 5.196 X 10'°,
and at a temperature of 500K, ¢ = 1.070 x 10'°.

If the prefactor is assumed to be 7o ~ 10735, the mean residence time of
water molecules on a stainless steel or aluminum surface at Ty, =300 K amounts
toz~107"%5-52x 10" = 52005 ~ 1.4 h, and at Tyy=500K, 7 ~ 1073 5-1.07 x
10" = 1.07 ms.

The desorption rate according to Eq. (6.6) is

. E
Jdes = —Von exp (— des) =-10"s"" x 10" cm? x exp(

96 000
RTw

7 8.314 % 300

=19%x10"s"ecm?.

In more common units as pressure unit times volume unit this is

Qv = gukT =1.9%x 107" s7Tem™2 x 1.38x 102 J/K
X 300K =7.9%x107"°Pam?3 s~ cm~?

=79%x10° mbarZs~' cm™.

Hence, the typical desorption rate of a nonbaked inner surface of vacuum is

about 108 mbarZs™' cm=2.
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If, at the time ¢ = 0, the surface is covered with 7 particles, integration of
Eq. (6.6) yields the particle number 7(¢) at the time ¢:

i(0) = o exp(~ f) , 6.9)

analogous to the law of radioactive decay. Thus, the time necessary for an
adsorption layer to desorb into a vacuum with only a fraction f = #(t)/i
remaining is

t=rln G), (6.10)

for example, t = 13.8 7 for f = 107°.

Equations (6.9) and (6.10) are valid only if none of the desorbed particles read-
sorb at the surface. This condition is obtained, for example, by facing the desorb-
ing surface to a pump with nearly infinite pumping speed, for example, a
cryocondensation pump. In the practice of sealed vacuum chambers with a
pump flange, however, readsorption is common. Hence, the reduction over time
of adsorbed particles in a system slows down considerably as is discussed in the
following section.

Example 6.4

A monolayer of H,O molecules is adsorbed on a stainless steel surface. How long
does it take the layer to desorb to 1% (f = 0.01), assuming that readsorption
does not occur (a) at room temperature at T\y=300K and (b) at elevated tem-
perature at Ty =500K? A monolayer of H,O molecules accommodates approxi-
mately A = 10'> molecules/cm? (see Example 6.1). The desorption energy of
H,O on stainless steel shall be Eges = 96 kJ mol™". According to Egs. (6.10) and
(6.8), and with 7o = 107 "3 s,

a. T=300K

....
Il

E
7In 100 = 7, exp(R;%)In 100 =10""5s
w

96 kJ mol™
xexp( _1mo_1 )In100
8.314Jmol™" K™' x 300K

24x10*s=6.6h.

b. T =500 K. Analogous calculation yields

t=49%10"3s~5ms.
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As the example shows, a rise in temperature accelerates desorption remark-
ably. This is also valid for outgassing (Section 6.3). For this reason, the term
bake-out was chosen.

Table 6.3 lists values of the exponential factor and residence time for 7y =
10713 s and for selected desorption energies Eq as well as surface (wall) temper-
atures Tw. However, it should be mentioned that experimental investigations
also yielded prefactors 7y in the range 107 s > 7o > 10715 5. Measured values of
E 4es vary between 0.08 kJ mol™! (£0.8 meV, evaporation heat of liquid helium)
and 1040 kJ mol™ (£10.8 eV, adsorption of O, on Ti) (see also Table 6.1).

6.2.3
Hobson Model of a Pump-down Curve

Calculating a p(t) curve of a vacuum chamber, that is, the pressure change over
time in the chamber, requires a description of the physical processes at the inte-
rior surface of the chamber and in its volume.

We will consider an isothermal chamber with the interior surface Ag and vol-
ume V, flanged to a vacuum pump. The pumping speed of the pump is
expressed in terms of an effective pumping area A,. All particles passing through
this area are pumped out. Therefore, the number of particles that are removed
from the volume by the pump is # ¢4 Ap, where n denotes the particle number
density in the volume and ¢ is their mean thermal velocity. Per unit time, 717 Ag
particles desorb from the surface. n ¢4 s Ag particles become readsorbed. The fol-
lowing equation may be formulated:

dn nc nc
V—= —A —A, ——sAs. 6.11
dr s — ik 45 S ( )

The change in the number of particles in the volume per unit time V dn/d¢ is
equal to the number of particles desorbing from the surface to the vacuum
minus the number of particles that are pumped out or that readsorb.

At the surface,

dn nc

n
Ag— =—5Ag ——As. 6.12
Sdt 435 Ts ( )

The change in particle number at the surface is equal to the number of particles
that readsorb per unit time minus the number of particles that desorb. The pre-
vious equation shows that the effective net desorption rate —As[4] generally
depends on #n and therefore on the pressure.

Combining Egs. (6.11) and (6.12) yields a differential equation:

d?n dn

c A
d_ < (SAS +Ap)+ )E+_V

Py=0. (6.13)
T
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Table 6.3 Exponential factor € = exp(Eqes/(RT)) and mean residence times 7 according to Eq. (6.7) with 7o = 107" s versus desorption energy Eqes and temperature T,
of the solid (1 year is equal to 3.15 x 107 s).

Edes Tw=77K (196 °C) 298K (25°C) 523K (250 °C) 1273 K (1000 °C) 2273 K (2000 °C)
ev kJ mol™"  kcal mol™ € /s e /s e /s € /s e /s
0004 042 0.1 1.93 2x107%% 118 12x107% 110 1.1x107%  1.04 1x1071 1.02 1x1071
00436  4.19 1 698 7x1071 543 54%x 10783 262 26x1071% 148 1.5x107% 125 1.3x10718
0436 419 10 27%x10%  3x10®  22x107 22x10° 15x10* 15x10”° 525 53x10712 919 9x 10713
2.18 210 50 6.7x10°  6.7x10% 9.4x10%  9.4x107 42x10° 42x10°  67x10* 67x107°
4.36 419 100 7.1x10% 7% 10% 1.6x 107  1.6x10* 43x10°  4x107*
654 629 150 6.6x10%®  6.6x10%  29x10" 29

13.1 1257 300 8 x10% 8x101°
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Figure 6.5 Pressure versus time for evacuation is one monolayer. V = 17, As = 100cm?, S =
of a vacuum system covered with adsorbate 157! (Ap = 0.09 cm? for air), T = 295 K, and
layers showing the indicated desorption ener- first-order desorption, that is, without any
gies Eges. At t = 0, the thickness of the layers  dissociation.

Using certain simplifications, Hobson [3] solved these equations for the impor-
tant range of desorption energies from 63 to 105kJ mol™. Figure 6.5 shows
the pressure plotted against time in a vacuum chamber of V =17, Ag =
100cm?, S=1¢s" (4, =0.09cm? for air), T =295K, for first-order
desorption (i.e., no dissociation). Hobson assumed pressure-independent sticking
probability; thus, applications of his model are limited.

Yet, an important conclusion can be drawn from this calculation: molecules
with low desorption < 71kJ mol™" leave the chamber quickly, within approxi-
mately 30 minutes, and subsequently, are irrelevant. Very high desorption
> 105 kJ mol™ impede desorption so effectively that the molecules can hardly
be pumped out at room temperature but, however, they hardly cause the pres-
sure to rise. Only in the transition region of 75-105 kJ mol™!, molecules contrib-
ute considerably to pressure, in the long term.

Unfortunately for vacuum technology, the desorption energy of water lies pre-
cisely in this range. Values measured for HO on stainless steel and aluminum
range between 80 kJ mol™" and 104 k] mol™" (Table 6.1). This means that H,O is
the main component in evacuating a previously vented vacuum chamber, and this
can prolong for days, even weeks, if the temperature is not adjusted (for baking).

In a pump-down process, the net desorption rate (desorption minus readsorp-
tion) drops, following an exponential law with time:

Jies = Kt (6.14)
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Thus, if pumping speed is constant, the pressure in the system follows a power
law as well:

p=kt™ (6.15)

Experiments yielded values for # from 0.7 to 2.0, mostly in the range of
0.9-1.3 [4]. This span indicates that not only one single type of H,O adsorption
site, that is, a corresponding desorption energy value, exists. This is understand-
able because a technical surface features a very complex structure and it is
unlikely that only a single desorption energy level is realized. Indeed, Redhead
explained this nearly 1/¢-behavior with a distribution of desorption energy
levels [5].

It should be noted, however, that there is an additional model that explains
the 1/t-behavior: Dayton [6] assumed that water molecules gather in small
pores and capillaries in the oxide layer on the metal surface. During pump-
down, these pores would gradually empty due to diffusion of H,O molecules.
Later, in Section 6.3, we will see that when degassing is diffusion controlled,
the rate of gas evolution, and therefore pressure, drops with £~/ although an
explanation for 1/¢-behavior is needed. Dayton suggested that diameters and
lengths of the pores and capillaries in the oxide vary and lead to differing dif-
fusion coefficients in calculations. He introduced a time constant 7, describing
the type of pore. If the pumping time > 7, gas evolution follows an exponential
law. A broader distribution of 7 causes the cumulative curve to show
1/t-behavior (Figure 6.6).

Cumulative
curve

106

Gas evolution rate

t=0.2

L \IHIII] | \IHIIII
0.1 1 10
Time —>

L \JHHII

1000

L \JHHII

100 h

Figure 6.6 Specific water evolution rate of a
vacuum chamber wall according to Dayton [6]
based on four selected effective time con-
stants 7 (0.25h, Th, 4h, 16 h) as in Eq. (6.7). In
this case, these constants do not represent

four different desorption energies (which
would yield the same results) but combina-
tions of a single desorption energy and diffu-
sion coefficients of four capillaries with
different dimensions.
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6.2.4
Monolayer Adsorption Isotherms
The so-called adsorption isotherm indicates the relationship between pressure
and surface coverage 6. Application of this isotherm is reasonable if adsorption
and desorption rates are in equilibrium, that is, neither rapid changes in pressure
nor in temperature occur. Kanazawa [7] showed that, for relative pressure
changes in time,
1 d A T
s o Py e (6.15)
p dt V 4
Here, V and A denote the volume and the interior surface of the system, respec-
tively. If the system fulfills the condition in this inequation, changes are quasista-
tionary and the surface coverage can follow pressure changes according to the
adsorption isotherm.

Example 6.5

What is the maximum value for dp/dt in a vacuum chamber of V =16.71,

A =4750cm?, and T = 300K, assuming that the pressure p = 1072 Pa is caused

only by water vapor (pump-down process) and s = 0.1? The condition is

dp AT ., 4750 59400 . i
— K ps—-—=10""Pa-0.1 =4.2P .
dt <P°v 3 @ 96700 T M3 as
In pump-down processes under high- or fine-vacuum conditions, the rate at
which the pressure changes is far below this value, that is, the process is
quasistationary.

When using Langmuir’s assumption for the coverage dependence of s, the iso-
therms are calculated by equating the equations for adsorption rate (6.5) and
desorption rate (6.6). Using the relationship between the pressure p and number
density n of the adsorbate in Eq. (3.19), this equalization yields the Langmuir
adsorption isotherm:

n a
o=_"_=_"2P (6.16)
Hmono l+ap
with
So To €Xp ( Edes )
0 7o
RT
a= L (6.17)

~ )
Mmono \/ 27 Mmolar RT

in which 7y as well as Eg4es can depend on coverage and T'y.
Figure 6.7 shows the characteristic plot of this isotherm. If p is low (p < a™t),
then @ « p. This proportionality is referred to as Henry’s law or Henry adsorption
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Figure 6.7 Langmuir adsorption isotherm 0(p) according to Eq. (6.16) for three different
temperatures.

isotherm. If p — o0, then € — 1, but @ cannot rise above 1. This means that under
Langmuir’s assumption, s « (1 — ), at most, a monatomic layer can develop.

Additionally, Langmuir supposed that the adsorption energy (= Eges) was
independent of 6. In contrast, Freundlich assumed an exponential relation
between adsorption energy and 6:

E4es = —E'Inb. (6.18)

This assumption uses the concept of a heterogeneous surface with exponential
energy dependence among the adsorption sites, leading to the Freundlich
adsorption isotherm in the form

0=kp’, (6.19)

where k and f are constants. A disadvantage of the assumption underlying the
Freundlich isotherm is that Ege = 0 for @ = 1, and Eges — o0 for @ — 0. Thus, for
both these boundary cases, it does not realistically model the physical behavior.
Therefore, the Freundlich isotherm is useful only for medium-high values of coverage.

For the Temkin isotherm, a linear change of adsorption energy with surface
coverage @ is assumed:

Edes = Edes,9=0(1 -—a 6) (620)

Eges 90 is the adsorption/desorption energy for @ = 0. a is a constant. For =1,
Eges drops to a value Egesg=1 > 0. The drop in Eges with increasing coverage can
be explained with repellant forces among adsorbed molecules. The calculation of
the adsorption isotherm yields [8]

P Edesﬂ:O
_ RT In T exp< RT ) 6.21)
Edes,0=0 _Edes,b'=1 1 +£ exp <Edesﬂ:1)
Iz RT
;lmono

where p* = ——FX—M—.
S0 7o 2r M RT
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Figure 6.8 Assumptions made for selected adsorption isotherms regarding the dependence of
desorption energy on coverage and adsorption site distribution on desorption energy.

For the three simple adsorption isotherms introduced here, Figure 6.8 shows
the energy dependence of ad-/desorption energy Eg4es from 6, and the corre-
sponding density p of adsorption sites versus Eges. All of these adsorption iso-
therms are applicable only if 6 < 1.

6.2.5
Multilayer Adsorption and Brunauer-Emmett-Teller (BET) Isotherm

It was observed in many cases that surface coverage increases to § > 1 when the
pressure rises. This indicates that additional physisorbed layers grow on top of
the chemi- or physisorbed monolayer. The simplest model for this phenomenon
assumes that each layer is completed to full surface coverage, that is, layer
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(n+1) does not start to grow on an incomplete partial layer n. Brunauer,
Emmett, and Teller formulated these conceptions. As experiments show, they
are applicable to many cases as long as the gas pressure p of the adsorbate is
well below the vapor pressure pg of the condensed adsorbate.

The parameters in Section 6.2.4 apply to the first layer. For all succeeding
layers, desorption energy Eqes in Eq. (6.7) is replaced by the heat of evaporation
Al and a different prefactor 7. Summing up yields the BET isotherm

£ Cger

Oper = . ) (6.22)

(1 — ﬁ) (1 + (CBET — 1)£>

Ps bs
where
70 Edes - Ah
_ 0 i 2

CBET 7 exp( RT\x/ ) (6 3)

is the ratio of the residence times on the first adlayer and the condensing layer.

Figure 6.9 gives a schematic representation of Eq. (6.22). If p — pg, then
0 — 0, and for p < pg, Oper xp (Henry isotherm). A type of Langmuir satura-
tion characterizes the transition range. However, as described previously,
if p = pg, the BET isotherm differs from data found in experiments. In practice,
the amount of gas condensing for p — pg is limited. Instead, continuously
pumped systems develop an equilibrium pressure p,, [9] and a corresponding
Ocq because the adsorbate is pumped away (pg is the saturation pressure in a
sealed, unpumped system).The amount of gas that can condense in a sealed sys-
tem is limited as well because the enclosed amount of gas is finite. The BET
isotherm features a f.q-value of several 1000, whereas 6.4 for other adsorption
isotherms such as the Frankel-Halsey—Hill (FHH) isotherm [10] or the McMil-
lan-Teller (MT) isotherm [11] is in the range of 10-100. Between 0.5 < 8 < 2,
Eq. (6.22) also serves to calculate the true surface of adsorbents.

T 10 //
0 8 //
(0]
>
T 6
o
c
(o]
E 4
“§ Ti<To<T,
g 2 T
£ //’/lﬁ/rg
Z o . . . .
0 0.2 0.4 0.6 0.8 1

p/ps—>

Figure 6.9 BET adsorption isotherms 8(p/ps) for three selected temperature levels. ps is the
saturation vapor pressure of the condensed adsorbate.
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6.2.6
Monolayer Time

The term monolayer time (monolayer formation time) was introduced in order
to estimate the period of time available for surface analysis of a clean, pure
surface at given pressure. Monolayer time is the period in which a monolayer
develops, assuming that all atoms and molecules striking the analyzed surface
from the gas phase adhere to the surface permanently (s = 1). The equation for
monolayer time,

jad Lmono = ;’mono’ (624)

can be rewritten using Eq. (6.5), the equation of state, Eq. (3.19), p = nk T, and
Eq. (3.43) for the mean velocity of gas molecules to yield

Imono = Himono V 278 Mmolar RT, (6.25)
pN

A

or as an abbreviated numerical value equation,

= 2
tmono/S = 3.18 X 10725 5 % VM, T/K.

If the residual gas is air (M, ~ 29) at T ~ 300K, a useful approximation formula
is obtained (7meno ~ 10'° cm™2):

3.6x107*P
tmono = 7as for air. (6.26)

p

Table 6.4 lists a few values. In investigations of surface properties, for exam-
ple, measurements of electron work functions, the monolayer time must
fulfill the condition fex < fmono if nearly constant surface coverage 6 for the
duration of the experiment f. is desired. Thus, the pressure must be suffi-
ciently low (Table 6.4), that is, ultrahigh-vacuum technology is usually
indispensable.

Table 6.4 Monolayer time tmono Versus gas pressure p for air, water, and hydrogen (at 300K,
Fimono & 10" cm™2).

p Pa 100 0.1 1075 1077 10°°

mbar 1 1073 1077 107° 107"
tmono (air) 3.6x107%s 3.6x1073 s 365.3 0lh 100h
tmono (H20) 2.8%x107%s 2.8x1073 s 285.3 47 min 078h

tmono (Ha) 93%x1077 s 93x107%s 09.3s 16 min 026 h
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6.3
Absorption, Diffusion, and Outgassing

Adsorbed particles can migrate into a solid by skipping to interstitial sites or
lattice defects or by moving along grain boundaries of crystallites (practically all
technical substances are polycrystalline). They are absorbed.

As every jump from one site to the next requires an activation energy Eg, the
process is temperature dependent. The totality of events is called diffusion.
According to Eq. (3.102), it is caused by a concentration gradient and features a
particle flow rate (Fick’s first law):

dndis

dx ’
where ngs denotes the density of dissolved (occluded, absorbed) particles and
the coefficient of diffusion

jue = =D (6.27)

Egi
D = Dy exp (— Rd]f) . (6.28)

The amount of absorbed gas can be far greater than the amount of adsorbed gas
because the number of sites available to dissolved, occluded particles in the bulk
of a solid is large compared with eligible sites at the surface.

Diffusion into a solid is technically relevant as, for example, in the case of H,
and O,: Ta and Nb can serve as hydrogen reservoirs. However, too high concen-
trations cause embrittlement in these metals. In steel production, considerable
amounts of hydrogen from the atmosphere dissolve in the steel. In stainless-steel
vacuum systems, this hydrogen diffuses out and is the main source of residual
gas in baked-out, ultrahigh-vacuum systems.

To exemplify, we will consider outgassing of a thin piece of sheet metal, that
is, a sheet metal with thickness 2d lying in the direction of the x-coordinate,
low compared with length / and width b (y- and z-coordinates, area A =1b)
(Figure 6.10). This one-dimensional diffusion problem is fairly simple to treat
mathematically. The change in the particle density ngs of absorbed particles
over time is (Fick’s second law)

anclis 62;”dis
- D pra (6.29)

From fabrication, the number density ngs o shall be evenly distributed
throughout the plate at the begin of diffusion, that is, at time ¢ = 0. Diffusion
starts at £ = 0 due to an increase in temperature (alternatively, prior to ¢ = 0, the
gas is in an equilibrium condition with the surrounding, and subsequently, the
outer space is evacuated). A diffusion current jg A, Eq. (6.27), emanates sym-
metrically to both sides of the sheet metal and a density distribution ng(x, £),
falling with time, develops. The boundary condition

ngis(xd) =0 for ¢ >0, (6.30)

247



248

6 Sorption and Diffusion

Z A

Ngis (X, t=0) =ngis o

\i Ngis (X, t)

ndih

Figure 6.10 Gas evolution on a thin plate of  surrounding. Subsequently, the volume on
thickness 2d. At t = 0, the adsorbate (gas) is both sides of the plate is evacuated and a
homogeneously dissolved in the solid (particle symmetric sinusoidal half-wave profile
density ngis o) and in equilibrium with the develops.

indicates that desorption is far more rapid than diffusion and the surface is
essentially free of the molecules diffusing to the surface. Assuming this, and with
the boundary condition

ndis(x) = Ndis,0 for t=0, (6.31)

the result to the differential equation, Eq. (6.29), at the surfaces reads [12]

2i+17° 22Dt
Jag(® = xd) = ndls 0 Z exp( %) (6.32)
The value
4d*
fout = 2D (6.33)

in the argument of the exponential function is a time constant characterizing
outgassing.

Example 6.6

Calculate toy for hydrogen and a stainless steel plate with thickness 2d = 2 mm
at 296 and 550K (typical baking temperature). The diffusion coefficient is given
in Eq. (6.28). Dy for stainless steel is 0.012cm?s™", and Eg¢ = 56 kJ mol™
according to Table 6.5. At room temperature,

56 kJ mol™
D=0.012cm?s " exp (— m<1) : )
8.314 kJ kmol™ K™' 296 K

=1.57%x10""?cm?s7!,
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and thus,

4(0.1 cm)?

= =2.58x%x10°s =81.9a.
721.57 x 10712 cm?2s~!

out

Analogous calculation for 550K yields D = 5.77 x 108 cm? s~ and

tout = 7.024 x 10*s ~ 19.5 h

The time constant £, is temperature dependent because D is temperature
dependent. For ¢ > 0.5t,,, the summation terms with i > 1 amount to less
than 2% so that, in this case,

2D 2D ¢
e ad) =P e < TP =i e~ L), 6.34
Jalx = 2d) = = na "’e"p( ad’ ) JoexP ( tout) (634

For ¢ « 0.5 toy, instead of Eq. (6.32), the following equation can be used for
approximation:

X 2D T Lout . T Lout
= ns oy ot 2 foue 6.35
Jait =7 is 0\[ 75" T To\[16 " (6:35)

Values in the two latter equations are determined by the constant

. 2D
Jo = 7 HMdis, 0- (636)

Table 6.5 Diffusion constant D, outgassing time constant ¢,,, and outgassing time ¢ for
selected outgassing levels according to the pure diffusion model for hydrogen in a stainless
steel sheet of thickness 2d = 2 mm, Dy = 0.012cm? s~ Eg¢ = 56 kJ mol™', Eq. (6.28).

T(K D) (m?2s™) tout (S) f=01 f=10"°
t(s™) t t(s™) t
0296 1.6 x 10712 02.6 x 10° 005.4 x 10° 170 a 3.5 % 10'° 1100 a
0500 1.7x1078 024x10°  005.0x10°  006d 3.3 % 10° 0038 d
0823 3.4x107° 01.2 x 10° 002.5 x 10° 042 min 1.6 x 10* 0004.4 h
1223 4.9x107° 83 174 003min 1.1 x10° 0019 min

Eq. (6.28) (6.33) (6.40) (6.40) (6.40) (6.40)
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Example 6.7

Calculate the gas evolution of hydrogen in Pa#s™! for a stainless steel plate of
thickness 2d = 2 mm at 296K after t = 107 s (116 days). Following Example 6.6,
t <to, and thus, Eg. (6.35) is applicable. Typically, ngs o amounts to
40 Pa # cm™3. From Eq. (6.36), it follows that

2% 1.57 %1072 cm?s™!
0.1cm

40PaZcm™

jo(296 K) =

=1.26x10"°Pass™ cm™2.
Thus, gas evolution

7 2.58x%10°

i =126x10"°Pass'cm™2 =
Jait 16 107

=89x107°Pass ' cm™.

Example 6.8

Calculate the pressure in a vacuum chamber made of stainless steel as in Exam-
ple 6.7. The chamber has an interior surface of 10 000 cm? and is pumped by a
pump with 1007s™'. The total outgassing rate is Gpv = Jair A = 8.9
107> Pa £ s~'. The equilibrium pressure

_ Gy _89x10°Pass
N
Thus, a hydrogen partial pressure of about 107 Pa (1078 mbar) can be expected
for a stainless steel vacuum system of thickness 2 mm that has never been
baked out.

=8.9x%x 1077 Pa.

As a result, under the considered initial and boundary conditions, the diffusion
current first drops following a complicated, Eq. (6.32), and later, according to a
simple, Eq. (6.34), exponential distribution law.

Vacuum chambers are often baked, that is, the material is exposed to high
temperature temporarily, in order to desorb molecules that were previously
adsorbed. The diffusion coefficient increases rapidly with rising temperature, and
thus, the increased temperature determines the concentration profile of the dis-
solved substance, which then is preserved at low temperature. If ¢; denotes the
baking period, then, for £; > £, (which is usually the case, see Example 6.6),

2Dr 77.'2 D1 tl
e = — Hg; - 6.37
Jai ==~ Mdis,0 exP( ¥ (6.37)

if D, and D; denote the diffusion coefficients at room temperature and baking
temperature, respectively.
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Example 6.9

Calculate jg at 296K for a stainless steel plate of thickness 2d = 2 mm, which
was previously baked out at 550K for t; =24 h. Considering Example 6.6,
t1 > tou, and thus, Eq. (6.37) is applicable. The prefactor in Eq. (6.37) corre-
sponds to j, in Example 6.7. Therefore (see also Example 6.6 for Dy),

1.26x 1072 PaZs™' cm™2 exp (— 7’576 x10~% cm” ™' 8.64 x 10° s)

Jai 4(0.1 cm)?

3.69x 1070 PaZs'cm=2.

Comparison of this value shows that this type of baking already reduces gas
evolution by a factor of 25.

Equation (6.32) allows calculating the relative number of dissolved particles in
the sheet metal with respect to the beginning of outgassing. A piece of sheet
metal of area A accommodates N¢ = 2d A ng;s, o particles at the time outgassing
begins. After a time ¢,

t
AN =2 [A Juie At (6.38)
0
particles have diffused out to both sides. Integration of Eq. (6.38) from ¢ to o

yields the residual gas content N(¢) after an outgassing period ¢, referred to as
the outgassing ratio (or exhalation ratio)

N(@) 8 [ e ¢ ¢
=N, T2 (e 9 " 25 (6.39)

where { = t/t,; for { = 1, that is, ¢ = ¢,, we find f = 0.3; here, higher terms of the
progression already are negligible. Thus, for f < 0.3, the simpler relation

t/ty=1In <%> (6.40)

can be used to calculate outgassing time ¢. Table 6.5 lists values for the case of
hydrogen in a stainless steel sheet metal of thickness 2 mm.

It must be pointed out that the previous equations apply only to the given
idealized conditions. In particular, the assumption that diffusion is far quicker
than desorption from the surface can be wrong for outgassing of hydrogen.
Hydrogen diffuses as individual atoms within a solid but desorbs only as mole-
cules. A hydrogen atom reaching the surface requires a second hydrogen atom
to form a molecule and desorb. Thus, the assumption ngis(+d) = 0, Eq. (6.30),
must be wrong because then the probability that two H atoms meet would be

251



252| 6 Sorption and Diffusion

50 -
Pa¢/cm?®
T 40
- 310 %
=2 30T 50
%g 70
§§ 20 100's
T8 10 —m
300
I I | 1T T

0 | | |
1.0 0.8 06 04 02 0 0.2 04 0.6 mm 1.0
-<— Distance from sheet center —>-

05 H
1000s
Pa¢/cm®
A ooapr
1200
c
c.S 0.3H 1400
OR 1600
= 1800 ———— |
5o 02 2000
e
8 0.1

0 | | | | | | | | | J
1.0 0.8 06 04 02 0 0.2 04 06 mm 1.0
—<— Distance from sheet center —>

Figure 6.11 Calculated hydrogen concentra-  model [13]. The volume on both sides of the
tion (starting value for t = 0 is 40 Pa # cm™3) plate is evacuated at 950 °C. Note that the

in a plate of 1.9 mm thickness versus time lower ordinate is stretched by a factor of 100.
according to Moore’s recombination (Data from [13].)

zero. In fact, the number of atoms at the surface will accumulate until the
recombination rate of hydrogen atoms equals the diffusion rate to the surface.
Moore [13] numerically calculated this process and found the following.

Figure 6.11 shows a concentration distribution of H atoms in a cross section of
an infinitely extended, 1.9-mm-thick stainless steel plate during degassing at
950 °C in a vacuum furnace (vacuum firing). The numbers denote the period of
baking in s. A considerable deviation from the purely diffusion-controlled con-
centration distribution develops due to the concentration at the surface, which
is different from zero (ngis(+d) # 0). With time, the plot of ngs approaches a
sine half-wave plus a constant instead of a simple sine half-wave as for the
diffusion-controlled model. The sine component drops with time until the concen-
tration is nearly homogeneous after 2000s. After this period, the recombination
rate limits outgassing while diffusion is rapid enough to replace two recombined
hydrogen atoms spontaneously. The rate of recombination j,. is proportional to
the square of the density of surface atoms #ng. The symbol for the proportionality
constant is K.
= Kiec 1. (6.41)

/rec
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Moore adopted his model to experimental data and found [13] Ky =
3x 1072 cm? s7! for 950°C, and Kpec = 1.14 X 107% cm? s7! for 25 °C.

After high-temperature degassing under vacuum (vacuum firing) of 1-2h, the
calculated outgassing at room temperature in the recombination-controlled
model of outgassing is many orders of magnitude higher than in the diffusion-
controlled model. Therefore, much longer degassing periods are required to pro-
duce equivalent outgassing rates.

If outgassing of hydrogen is controlled by the rate of recombination, one
would expect surface roughness, which influences surface diffusion, to also influ-
ence the effective hydrogen desorption energy. Indeed, Chun [14] observed this
phenomenon in experimental investigations.

It is still openly discussed in the literature, if the outgassing rate of hydrogen
from stainless steel is controlled by diffusion or recombination. Investigations of
surfaces of stainless steel after vacuum firing showed [15,16] that grain boundaries
are more pronounced and deepened compared with the state before vacuum firing
while the surfaces of the grains are smoother (Figure 6.12). With deeper grain
boundaries there are more active sites for adsorption and recombination available.
On the smoother surface, terraces are formed, which, at their steps, also contain
many adsorption sites. Surface diffusion, on the other hand, is greatly helped by
smooth terraces, so that the atoms can easily diffuse across them and recombine.
In addition, the enrichment of nickel compared with iron on the surface after vac-
uum firing favors recombination. Leisch [15,16] estimates that 50 recombination
sites are available on 100 nm? of such a surface. These facts at least qualitatively

Al

Figure 6.12 STM image of a vacuum fired stainless steel surface with (111) terraces and steps
in between. The detail shows an area of 1T pum x 1 pm. (By courtesy of M. Leisch, University Graz,
Austria.)
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support the assumption that for the case of vacuum fired stainless steel desorption
is the faster process than diffusion in the bulk.

6.4
Permeation

In the previous section, we assumed #4;s(d) = ngis(—d) as the boundary condition
for calculating outgassing, that is, equal conditions on both surfaces of the
vacuum wall. If, however, the outer surface is exposed to air while the interior
surface is exposed to vacuum, it should be considered whether components of
the air or other external gas species penetrate the vessel walls and propagate
into the vacuum. This process is referred to as permeation and features three
steps (Figure 6.13):

¢ adsorption of a molecule to the outer surface (generally, high-pressure side);
e diffusion through bulk material;
o desorption from the interior surface (low-pressure side).

Adsorption
Desorption O

pgo Diffusion Op1

~

n g P1> P2

DN

x— 2d

Figure 6.13 Processes during permeation. On  low-pressure (p,) side. At equilibrium, a linear
the right-hand high-pressure (p,) side, (net) concentration gradient establishes in the solid
adsorption of gas develops. The gas diffuses due to a homogeneous gas flow density
through the solid and (net) desorption is throughout the entire system.

observed on the left-hand



6.4 Permeation

P1» Py, and 2d denote the pressure of permeating gas on the high-pressure
side, the pressure on the low-pressure side, and the thickness of the bulk mate-
rial, respectively. If permeation is diffusion controlled, then the permeation
rate jp., depends on the kinetics of the involved molecules. Under stationary
conditions,

) 1
Jperm = Kperm 2d (1 — pa)s (6.42)

if the gas molecules do not dissociate on the considered material (e.g., Ny, Oy,
H,0 on many different materials), that is,

; , 1
]perm = I<perm ﬁ (p(l)S - pg'5)7 (643)

if a diatomic gas dissociates (e.g., H, on stainless steel). In a stationary condition,
a linear concentration profile develops between both surfaces (Figure 6.12). The
constant Kperm is a characteristic for each molecule/material combination and
heavily temperature dependent. Kperm is the product of solubility Ks and the
diffusion constant D,

Kperm = Ks D. (6.44)

Solubility K's describes the ability of a substance to take up a certain type of (gas)
particle (atom or molecule) from the surrounding. A concentration discontinuity
of the corresponding particle species is observed at the boundary between the
substance and the environment. As well as D, K is exponentially temperature
dependent:

Es
Ks=K -— 6.45
s = Kso eXp( RT)’ (6.45)
where Ky is the solubility at T — oo and Es is the enthalpy of solution of the
molecule. At higher density (pressure) and thermal equilibrium, K describes
the concentration discontinuity
K i
s (with »; the particle density inside, and #,

Ksy 1o (6.46)

the particle density outside)

at the interface of the substance.

Example 6.10

Under the assumption that diffusion is rate determining, how high is the stationary
permeation rate of air-born hydrogen (py, = 0.01 Pa) into a vacuum vessel made of
stainless steel with thickness 2d = 2 mm at 23 °C? According to Louthan [17],

K. =6x10"2Pa¢s"cm ' Pa~"2exp|( —

perm

59.9kJ mol—‘)
RT
=1.61x10"2Pa¢s ' cm™' Pa~1/2,

The pressure p, in the vacuum chamber is negligible p, <« 0.01 Pa.
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According to Eq. (6.43),

Jperm

=161%x10"%Pass ' ecm ' Pa"/?.
=8.06x10""PaZs' cm™2.

V1072 Pa

0.2cm

Compared with typical outgassing rates, this gas flow is extremely low (see also
the result in Example 6.9). Thus, the contribution of permeation to the residual
pressure is important only when specially prepared or very thin stainless steel
sheet metal is used. Furthermore, it should be taken into account that the oxide
layer at the surface often acts as a hydrogen-diffusion barrier and additionally
restrains permeation rates.
If permeation is controlled by sorption, then [18]

s
= (p,—p,)
V2rmk T(lg1 P

J perm
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This chapter explains vacuum pumps based on the principle of positive displace-
ment. These pumps are used as stand-alone pumps in the low and medium
vacuum range or serve as backing pumps for high-vacuum pumps.

71
Introduction and Overview

Positive displacement pumps are the most important and most commonly used
pumps in vacuum technology. According to DIN 28400,” Section 2 (1980), a posi-
tive displacement pump is defined as a “vacuum pump that aspirates, compresses,
and discharges a gas to be pumped, using valves if necessary, by means of pistons,
rotors, sliders, etc., which are sealed from another either with or without liquids.””

Oscillating pumps are the simplest positive displacement pumps (Section 7.2).
Historically, they are among the first pumps used to generate vacuum (Chapter 1).
Either a diaphragm with a connecting rod or a piston aspirates gas through an
inlet valve during one half-cycle of the motion and ejects the gas during the other
half-cycle via a discharge valve.

In the beginning of the twentieth century, liquid sealed rotating positive dis-
placement pumps were developed to yield lower pressures and higher pumping
speeds. They can be used in the low vacuum range, certain types of pumps also far
into medium vacuum. These pumps use sickle-shaped suction and compression

1) Translator’s note: corresponds to ISO 3529.
2) Translator’s note: translated from the German.

Handbook of Vacuum Technology, Second Edition. Edited by Karl Jousten.
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2016 by Wiley-VCH Verlag GmbH & Co. KGaA.
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chambers. In sliding vane rotary pumps, the chambers are sealed by vanes
arranged in a rotor. Rotating plunger pumps use a piston and an eccentrically
guided rotary plunger arranged inside a housing to seal the chambers. Liquid ring
pumps feature working liquid and impeller blades in order to seal the chambers. In
operation, the sickle-shaped suction chamber forms anew in every cycle, starting
with zero volume each time. As there is no dead space, pumping speed is high, far
into the medium vacuum range.

In the mid-1950s, and particularly towards the end of the twentieth century,
dry-running rotating positive displacement pumps, that is, without liquids such
as oil or water for lubrication or sealing, were developed. Listed in the order of
their introduction to the market, these include Roots pumps, multistage pumps
(dry sliding vane rotary pumps), tooth-type rotary pumps (claw pumps), scroll
pumps, and screw-type pumps. They combine the advantages of being oil-free
such as oscillating positive displacement pumps and of having high pumping
speeds such as rotating displacers.

Distinct PNEUROP acceptance guidelines [1] and DIN standards for rating
assessments demonstrate the significance of positive displacement pumps. ISO
standardization includes these regulations as well (see also Table A.22).

Pumping speed is the most important characteristic of a positive displacement
pump. According to the acceptance criteria and standards [1], pumping speed S
is the volume flowing from a given measurement dome at given pressure
through the inlet cross section of a vacuum pump per unit time. The units used
for S are m*h™! and #s7".

Table 7.1 provides an overview of positive displacement pumps introduced in
this chapter. Here, oscillating and single- or twin-shaft rotating displacers are
differentiated according to the driving principle. Screw-type pumps transport
gas axially along the screws, as opposed to twin-shaft claw or Roots pumps that
deliver radially. However, all three types of pumps include two drive shafts, spin-
dles, or screws. The basic operating principle of scroll pumps uses two geared
spirals to transport the gas. The principle is very similar to that of twin-shaft

Table 7.1 Taxonomy of positive displacement pumps according to the driving principle. The
bracketed numbers indicate the corresponding sections that cover the specified pump type.

Positive displacement pumps

Oscillating positive displacement Rotary positive displacement pumps
pumps (7.2)
Piston pumps (7.2.1) Single-spool (7.3) Twin-spool (7.4)
Diaphragm pumps (7.2.2) Liquid ring pumps (7.3.1) Screw-type pumps
(7.4.1)
Sliding vane rotary pumps (7.3.2)  Claw pumps (7.4.2)
Multistage pumps (7.3.2.2) Roots pumps (7.4.3)

Rotary plunger pumps (7.3.3)
Trochoidal pumps (7.3.4)
Scroll pumps (7.3.5)




7.1 Introduction and Overview

pumps but, in scroll pumps, one spiral is generally fixed, for why this type of
pump is categorized as a single-shaft drive.

In contrast to other types of pumps that are usually used for low vacuum,
Roots pumps, named after the first person to use them in air compression, are
used mainly in the medium vacuum range. They feature two symmetrically
designed pistons moving on rolling contact and synchronized by a gear pair, so
that only a small gap remains between both pistons as well as between the pis-
tons and the pump housing. Due to noncontact operation, the pistons can rotate
at high speed, and thus, high pumping speed is obtained with small pumps. At
high pressures, however, high gas backflow through the gaps develops, leading to
poor compression. For operation, a Roots vacuum pump, therefore, usually
requires one of the above-mentioned pumps as a backing pump, which com-
presses to atmospheric pressure.

All types of positive displacement pumps are often used as main pumps in
vacuum systems. However, they may also serve as fore pumps to steam-jet or
vapor pumps, fluid entrainment pumps, and turbomolecular pumps, or as auxil-
iary pumps to ion pumps, getter pumps, and cryopumps. Choosing the appropri-
ate, most efficient combination of pumps is an important criterion for a
particular application.

Many processes in industry and research use oil-sealed rotating vacuum
pumps for generating low and medium vacuum. They are favorable due to their
relatively high pumping speeds, wide operating ranges of pressures (see
Table A.15), high compression ratios, and because they allow continuous opera-
tion. However, two basic disadvantages of using oil are:

e backward migration of oil (vapor and eventually liquid) to the inlet with
possible contamination of vacuum (process) chamber (see Section 7.5.2), and
¢ contaminated and, therefore, deteriorated pump oil due to pumped-down process

gas and vapors, often with accumulated solid particles (dust) (see Section 7.8).

More or less costly measures are necessary in order to avoid or at least reduce
these disadvantages, depending on the particular application. These include
additionally attached filters of all sorts as well as usage of expensive special-
purpose oils (see Table A.17) and systems for their purification and reuse.

Facing these problems, semiconductor industry, in particular, called for a
lubricant-free rotating positive replacement pump. Vacuum systems in this
branch of industry use processed gases that are often toxic and/or corrosive.
When these gases are pumped down, liquid or solid particles can form along the
path through the pump, especially in contact with humidity. All of this reduces
the lubricating properties in the suction chamber and makes environmentally
acceptable disposal of the oil considerably more difficult. Since approximately
1987 [2], such dry systems are available on request.

After introducing the pumps listed in Table 7.1 section wise, Section 7.5
covers specific characteristics of oil-sealed rotating pumps in general. Principles
of gas ballast and power requirements, common to all types of positive displace-
ment pumps, are discussed in Section 7.6. General operating and safety instruc-
tions for positive displacement pumps are discussed in Section 7.7. Section 7.8

261



262

7 Positive Displacement Pumps

describes accessories that are required for many processes and are connected
directly to mostly oil-sealed positive displacement pumps.

7.2
Oscillating Positive Displacement Pumps

This type of pump includes piston and diaphragm pumps. Both types are dry
pumps in which the transferred gas or the gas vapor mixture is not exposed to
any sealing or lubricating agents. Either an oscillating piston, connected via a
shaft and connecting rod, or a diaphragm with connecting rod aspirates the gas
during one half-cycle of motion and ejects the gas during the second half-cycle
(through a valve).

Even in the most precisely manufactured systems, the basic design of these
pumps leads to a so-called dead space after ejecting at the dead center of the
piston or connecting rod. From this space, the gas to be pumped is not pushed
into the exhaust line. Therefore, piston displacement pumps with a high ratio of
suction chamber volume to dead space develop typical ultimate pressures in the
range of 0.1-1Pa, while diaphragm pumps with lower compression ratios due to
limited motion freedom of the diaphragm usually develop ultimate pressures
around 100 Pa in single-stage operation.

7.2.1
Piston Pumps

A large variety of small piston pumps is available for technical applications. In
vacuum technology, they have gained in importance recently in the realm of oil-
free vacuum pump development. Initially, single- and two-stage designs of these
pumps developed ultimate pressures of approximately 500 Pa and 10 Pa, respec-
tively. Figure 7.1 shows a model of a simple reciprocating piston pump. During
the downward movement with open right-hand inlet valve, the pump aspirates
gas. For the period of upward motion, the outlet valve is open, the inlet valve is
closed, and the pumped gas is compressed and ejected. A dead space remains at
the top dead center (TDC) from which no gas is ejected. The gas remaining in
this dead space at exhaust pressure expands during the subsequent inlet stroke
and partially or fully fills the active volume, thus preventing new gas from being
aspirated. The compression ratio of a positive displacement pump with dead
space is therefore limited to the ratio of its maximum working volume to the
dead space.

Recent developments, for example, four-stage pumps, have reduced the ulti-
mate pressure considerably (down to approximately 2 Pa) in order to allow for
direct connection to a high-vacuum pump [3]. Figure 7.2 shows a schematic
arrangement of a four-stage dry-running pump, a further development of the
reciprocating piston pump [4,5]. The diameter of the four identical pistons is
100 mm; the cylinder height is 25.4 mm (1 inch). Due to the relatively low stroke



7.2 Oscillating Positive Displacement Pumps
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Figure 7.1 Diagram of a reciprocating piston pump.

frequency of 1200 min~!, the pressure-dependent, maximum (net) pumping
speed is low, 34 m®h™". The ultimate pressure is in the range of 1.5-3 Pa.

After some time of operation, in addition to the dead space, the gas leaking in
at the cylinder from the outside due to wear also leads to an increase of ultimate
pressure.

Modern surface treatments as well as materials such as fluoroplastic coatings
and pistons with special sliding surfaces have led to considerable advances [6].

Figure 7.2 Diagram of a four-stage reciprocating piston pump with a compression of
50 000 [4,5].
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Nevertheless, the disadvantage of the gap remains, as opposed to a hermetically
sealed, fixed diaphragm (see the following section). Small amounts of pumped
media can always leak from the drive system through the gap and cause corro-
sion of bearings, etc. Also, pumped particles can cause wear on the sealing
surfaces of the gap.

722
Diaphragm Pumps

The origin of modern diaphragm pumps is unknown. In the 1940s, development
of elastomer materials promoted widespread use of diaphragm pumps and
compressors. Further advances in elastomer materials in the early 1960s led to
diaphragm pumps with mechanical diaphragm drives featuring higher pumping
speed, lower ultimate pressure, and above all, longer service life of the
diaphragms [7]. Additional progress in materials technology as well as new
design and fabrication methods such as CAD and CNC contributed to the
development of today’s diaphragm vacuum pumps as standard laboratory
pumps.

Towards the end of the last century, two main steps characterize the devel-
opment: the introduction of chemical diaphragm pumps that use chemically
resistant fluoroplastics for chemical laboratories in the early 1980s, and,
around 1990, the emerging multistage diaphragm pumps as oil-free backing
pumps for the newly developed turbo molecular pumps with molecular stage.
Additionally, materials and manufacturing optimizations, three- and four-
stage diaphragm pumps, and kinetic improvements due to the introduction
of speed-controlled drive systems provided process-controlled vacuum sys-
tems with pumping speeds and ultimate pressures found only in rotating
vane pumps, at the time.

7.2.2.1 Design and Principle of Operation

Diaphragm vacuum pumps are oscillating positive displacement pumps
according to the definition in ISO 3529-2. Today, diaphragm vacuum pumps
are built in a large variety of different sizes with individual vacuum techno-
logical properties. For reasons of physics and mechanics, they cover a range
of low pumping speeds only. Diaphragm pumps are manufactured with
pumping speeds up to approximately 20 m*h™'; however, the pumping speed
of most commercially available pumps is below approximately 12 m*h™. As
for ultimate vacuum, they are limited to >10Pa (0.1 mbar) for physical
reasons.

Figure 7.3 shows the design of a diaphragm pump: the head cover and the
diaphragm with the diaphragm clamping disk define the pumping chamber. The
diaphragm is fixed between the head cover and the housing at the outer perime-
ter. The upward and downward motion of the connecting rod results in a
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Figure 7.3 Diagram of a diaphragm pump stage: @ housing, @ valves, ® head cover, ®
diaphragm clamping disk, ® diaphragm, ® diaphragm supporting disk, @ connecting rod,
eccentric rotor (crank shaft).

periodic change of the suction volume in aspiration and compression phases.
Gas-flow-controlled inlet and outlet valves are mounted between the housing lid
and the head cover.

The gas in the dead space remaining at the top of stroke is not ejected. During
the following inlet stroke, this volume expands anew and fills the working vol-
ume partially, thus limiting ultimate vacuum. The compression ratio of a positive
displacement pump is limited to the ratio of maximum working volume and
dead space.

7.2.2.2 Pumping Speed and Ultimate Pressure
The pumping speed of a diaphragm pump is a function of the suction chamber
volume V7, rotational speed #, and dead space Vpg..

The effective pV flow g,,,, then is

qu = VI(VS Pin — VDS.pout) (71)
(py, inlet pressure; p,, outlet pressure, generally, atmospheric pressure), and the
effective pumping speed S of a single-stage pump

s=v (7.2)

Here, backflow is neglected. The pumping speed of a multistage pump is calculated
from a system of equations incorporating analogous expressions for the individual
stages. The equations are linked by the condition of gas-flow conservation [8].
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Inlet port
@ Stage 1
N
Stage 2
Stage 3
Stage 4
Atmosphere
Three-stage Four-stage
four-head eight-head
diaphragm pump diaphragm pump

Figure 7.4 Examples of heads connected in parallel and in series. High pumping capacity by
parallel connection of intake heads and with a pressure relief valve (if appropriate).

A more accurate calculation would have to take into account the backflow
through gaps and the influence of flow dissipation in the inlet. Leakage, for
example, through valves, if unavoidable, has negative effect on the theoretically
achievable ultimate pressure of the pump.

Typical values of compression ratios p,./p;, range from 10 to 30. Vacuum
technical connections of pump heads in series lead to lower ultimate pressure.
Single- to four-stage arrangements are common (Figure 7.4).

An increase in pump chamber volume of a diaphragm pump causes structural
and fabricating problems. Therefore, parallel connections of pump heads are
favorable when higher pumping speed of up to approximately 20 m*h™" is
requested. Use of diaphragm pumps is limited and restricted mainly to
laboratory and pilot installations due to the limited pumping speed.

Figure 7.4 shows diaphragm pumps in different three- to four-stage arrange-
ments. A four-cylinder pump, for example, can be connected single-, two-,
three-, or four-stage-wise, all featuring the same external dimensions. This leads
to the following vacuum technological data (see also plots in Figure 7.5):

e single-stage, 8 m*h™" at atmospheric pressure (A), 70-80 mbar (hPa) ultimate
pressure;

® two-stage, 4 m3h™! (By), approximately 7-9 mbar (hPa) ultimate pressure;

o three-stage, 2.8 m*h™" (B,), approximately 2 mbar (hPa) ultimate pressure;

o four-stage, 2 m3h™! (Q), approximately 0.6 mbar (hPa) ultimate pressure.

7223 Gas Ballast

Greater amounts of condensate in a pump cause mechanical pressure peaks due
to the limited dead space, and therefore, decrease the service life of valves and
diaphragms. Chemical diaphragm pumps, in particular, are often equipped with
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Figure 7.5 Pumping capacities and ultimate pressures of geometrically same-sized multistage
diaphragm pumps with the same number of heads but different connection layouts for the
heads.

a gas ballast device, which either prevents condensation or discharges conden-
sate produced by the pump [9]. As in sliding vane rotary pumps, electromagnetic
gas valves with process-determined control are used here as well [10].

7224 Drive Concepts
Diaphragm pumps for laboratory use are usually driven by monophase motors
with a nominal rotational speed of 1500 revolutions per minute (at 50 Hz power
frequency). Increasingly, variable-speed diaphragm pumps are used that feature
better characteristics in terms of pumping speed, ultimate pressure, and
controllability.

Two types of speed controlled motors are applied (see example in Figure 7.6):

1) Frequency converter-controlled three-phase AC motors, preferably for large
pumps.

2) Electronically commutated, brushless DC motors, being far more compact
than three-phase AC motors with frequency converters.

Table 7.2 shows the increase in maximum pumping speed by up to 40%, and
the lowering of the ultimate pressure by a factor of 2, with the same mechanical
vacuum unit by using a speed-controlled drive.

7225 Ultimate Pressure

Typical ultimate pressures for diaphragm pumps with fixed speed and flat dia-
phragm are approximately 70—80 mbar (hPa) for single-stage designs, approxi-
mately 9 mbar (hPa) for two-stage designs, approximately 2mbar (hPa) for
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Figure 7.6 Two diaphragm pumps by VACUUBRAND: (a) MV 10 NT VARIO: 12.1m>h™", 30 Pa;
(b) MD 1 VARIO-SP: 1.8m>h™", 100 Pa (compare Table 7.2).

three-stage designs, and approximately 0.6 mbar (hPa) for four-stage designs.
The dead space can be reduced and the ultimate pressure improved by tangen-
tial fixing and/or by using preformed diaphragms that move to direct contact
with the wall of the compression volume in the top of stroke [7,11].

A speed-controlled, four-stage diaphragm pump reaches 30Pa ultimate
pressure, the lowest of all commercially available diaphragm pumps [12].

Table 7.2 Selected diaphragm pumps with a single-phase AC motor (fixed frequency),
frequency converter-controlled three-phase AC motor (VARIO), and brushless DC motor
(VARIO-SP) (VACUUBRAND).

Model Length Weight Maximum pumping Ultimate
(mm) (kg) speed (m*h~") pressure (hPa)

MD 1 230V/50Hz 303 6.5 1.2 1.5

AC

MD 124V DC 223 4.1 1.8 1

VARIO-SP

MD 4 230V/50Hz 325 16.4 3.3 2

AC

MD 4 VARIO 325 18.6 4.3 1

MD 4 24V DC 260 122 4 1

VARIO-SP

MV 10 NT (AC) 554 30.6 10.4 0.5

MV 10 NT VARIO 554 31.2 12.1 0.3
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Figure 7.7 Pumping capacities for helium and nitrogen versus inlet pressure for two-, three-,
and four-stage diaphragm pumps.

7.2.2.6 Influence of Gas Species on Pumping Speed and Ultimate Pressure

The displaced volume and the suction volume geometry mainly determine
pumping speed and ultimate pressure of diaphragm pumps. In practice, the gas
composition has a minor influence on both parameters (Figure 7.7). A 10%
increase in pumping speed for light gases, compared to nitrogen, is probably due
to better filling of the suction chambers because of different gas viscos-
ities [13,14]. The influence of memory effects on the diaphragm material is
below measuring sensitivity for plane diaphragms [15].

7.2.2.7 Influence of Rotational Speed on Ultimate Pressure

At lower pressure (<10 mbar (hPa)), gas forces on the valves are very low. This
also contributes to a speed-dependent ultimate pressure (Table 7.2, Figure 7.8).
Because of lower driving forces, the valves require more time to follow the gas
flow at lower pressures. The lowest ultimate pressure is not obtained at higher,
but at lower rotational speed than the typical nominal revolutions of 1500 min~!.
This behavior is important for the use of diaphragm pumps as backing pumps

for turbomolecular pumps (see Section 7.2.2.10).

7.2.2.8 Design Principles

Pump Heads and Diaphragm

The geometric design of pump heads is of particular importance. Modern, com-
puter aided design and CNC-fabricating techniques allow adapting the geometry
of pump heads, and if necessary clamping disks, optimally to the motion and to
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Figure 7.8 Speed dependence of ultimate pressure for several four-stage diaphragm pumps.

the surface of the diaphragm. This applies likewise to preformed or structured as
well as flat diaphragms. Flat diaphragms are punched out of a flat elastomer
plate and are fixed between a clamping disk and a supporting plate. Preformed
and structured diaphragms are vulcanized onto a usually metallic core inside a
mold resulting in a higher amount of elastomer. Aging after vulcanizing as well
as embrittlement of elastomers are discussed in [12]. A flat diaphragm requires
higher precision mechanical fabrication of head components. Then, it shows
excellent results with respect to pumping speed, ultimate pressure, and service
life, which, today, usually exceeds 15000 h. Manufacturers’ ratings of different
diaphragm designs vary in terms of advantages and disadvantages.

Valves

As valves, gas-flow-controlled flapper valves are common. The desired maximum
conductance stands in contrast to geometrical restrictions of valve shape and reli-
able sealing at the inlet and outlet seats. Standard materials for valves are FKM
(e.g., Viton®), PTFE (e.g., Teflon®), PEEK, or FFKM (e.g., Kalrez®, Chemraz®),
depending on the application. Single-stage diaphragm pumps generate reasonable
ultimate pressures, even with relatively stiff valves of PTFE or PEEK. Diaphragm
pumps with very low ultimate pressures require lightweight, elastic, and very well
sealing valves as well as nonwetting and adhesion-reduced valve seats.

Materials

For gas-wetted parts, metallic materials as well as fluoroplastics are used. The
latter have significant advantages in corrosive applications or in presence of con-
densing media as opposed to liquid-sealed and lubricated rotating pumps, which,
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Figure 7.9 Exploded view of a pump head for reinforcing core); 5: diaphragm clamping disk
chemical applications. 1: housing cover; 2: (ETFE with reinforcing core); 6: flat diaphragm
housing cover insert (carbon-fiber-reinforced  (PTFE) with fabric-reinforced FKM support; 7:
PTFE); 3: valves (PTFE or FFKM); 4: head cover  diaphragm-supporting disk; 8: connecting rod.
(ceramic-reinforced PTFE or ETFE with

for design and tolerance aspects, require metallic materials that are subject to
corrosion.

Figure 7.9 illustrates the design of a pump head for chemical applications. In
spite of the used reinforced PTFE, creeping under load can lead to undesired
changes in geometry. If the PTFE is completely housed in (2) by an appropriate
casing cover (1), mechanical stresses are carried by the metallic components, and
the pumped-down gas is still not exposed to the metal.

Requirements on the head cover (4) and the clamping disk (5) are high in
terms of chemical resistance and mechanical stability. Mechanical deformation
of only 0.1 mm is tolerable for silent operation and constantly high-vacuum per-
formance of chemical application diaphragm pumps, and this, throughout a ser-
vice life of many years and under high mechanical and thermal load. Solutions
combining mechanical and material advantages use fiber-reinforced thermoplas-
tic fluoroplastics with wall thicknesses > 0.5 mm molded around stabilizing
inlets made of high-strength plastics or metals.

7.22.9 Diaphragm Pumps in Chemical Laboratories

During the last two decades, diaphragm pumps have become the dominating pump
type in chemical laboratories. Other than oil-sealed sliding vane rotary pumps, they
do not require a cooling trap on the vacuum side to protect the pump. In a dia-
phragm pump, pumped-down solvents can be retained effectively, thermo-
dynamically favorable, on the exhaust side at atmospheric pressure and room
temperature. Specially designed, appropriate emission condensers are combined
with diaphragm pumps to compact pumping units (Figure 7.10) [15-17].
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PC 3001 VARIO™™

Figure 7.10 Chemistry diaphragm pump PC 3001 VARIOpro by VACUUBRAND: 2m>h~", 200 Pa,
with solvent recovery.

For such units, vacuum control is of particular importance [18]. Modern
electronics and new algorithms allow simple control of different processes as
well as automatic operation without any necessary programming [19].

7.2.2.10 Diaphragm Pumps as Backing Pumps to Turbomolecular Pumps
Development of modern turbomolecular pumps with improved critical backing
pressure at outlet pressures of up to 30 mbar (hPa) allows utilization of oil-free
diaphragm pumps as backing pumps. The required size of the fore-vacuum
pump depends on a number of factors, for example, the desired pump-down
time (Figure 7.11).

If a wide-range turbomolecular pump is used in a pressure range higher than
the ultimate vacuum, that is, at high gas load, the pumping speed of the
diaphragm pump must be rated for maximum gas throughput at the optimal
operating point of the wide-range turbomolecular pump [20].
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Figure 7.11 Pump-down time for a 100 # vacuum chamber using a wide-range turbomolecular
pump (20 # s~') with three different backing pumps.

Low ultimate pressures of fore-vacuum pumps reduce the power consumption
and cooling demand of wide-range turbomolecular pumps due to lower gas
drag [21]. Also, low ultimate pressure of a backing pump contributes to lower ulti-
mate pressure performance of a turbomolecular pump in the high vacuum range
and increased compression values for light gases. Therefore, a diaphragm pump
should provide an ultimate pressure <5 mbar (hPa) although wide-range turbomo-
lecular pumps tolerate a fore vacuum of up to 30 mbar (hPa).

Service life and maintenance rates are determined primarily by the service life
of diaphragm and valves. Flat diaphragms and optimized geometries yield dia-
phragm service lives of more than 15 000 h. Speed-controlled diaphragm pumps
(e.g., VACUUBRAND® “VARIO®”) reach considerably higher diaphragm service
lives and thus reach the maintenance intervals of turbomolecular pumps.

For corrosive gas applications, only chemical-type diaphragm pumps are used,
in which gas-wetted parts are made of highly corrosion proof and chemically
resistant materials such as fluoroplastics.

The influence of diaphragm pumps as backing pumps on the residual gas
spectrum, particularly on hydrogen partial pressure, is discussed in [22] and
illustrated in Figure 7.12. As indicated by the diagram in the lower image in
Figure 7.12, a variation in fore-vacuum pressure influences hydrogen partial
pressure. Shifting the working pressure to an area with better compression ratio

in the turbomolecular pump reduces hydrogen partial pressure substantially. An

influence on hydrogen partial pressure due to memory effects in the diaphragm
could not be detected within measurement accuracy [18].
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Figure 7.12 Residual gas composition of a tur- 1500 min~': ultimate pressure 0.3 mbar (hPa)
bomolecular pump (lower image) versus fore- (30 Pa), ® operation at self-optimized speed
vacuum pressure (upper image). The fore- for minimum ultimate pressure (approximately
vacuum pressure is varied solely by changing 700 min~"), ultimate pressure approximately
the speed of the four-stage diaphragm pump 0.1 mbar (hPa) (10 Pa).

(without any gas intake): © operation at

Compared to constant-speed pumps, speed-controlled VARIO® diaphragm
pumps considerably improve the capacity of the overall system when combined
with wide-range turbomolecular pumps. During pump-down of a vacuum sys-
tem or in processes with high gas throughput, the speed of the diaphragm pump
is increased as required, up to 2400 min~!. After the ultimate pressure of the
pump is reached, the speed of the VARIO® diaphragm pump is lowered consid-
erably. VARIO® pumps reduce pump-down time to 10 mbar (hPa) by approxi-
mately 20%. A special control algorithm automatically adjusts the speed to
deliver the best ultimate pressure in the diaphragm pump (VACUUBRAND
“Turbo Mode”).

When operating at high and ultrahigh vacuum, a wide-range turbomolecular
pump delivers low mass flow only. In many cases, a speed of < 500 min~! is
sufficient for the VARIO® diaphragm pump to cope with this gas flow. This con-
trolled reduction of speed reduces the average number of strokes and thus yields
noticeably higher diaphragm service life. Therefore, service life and maintenance
intervals of VARIO® diaphragm pumps reach the high service life of over
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Figure 7.13 Very compact diaphragm pump  AC motor (shaded in the image): 1.9 m3h~',
as a backing pump to turbomolecular pumps: 9 mbar (hPa), 10.1 kg, approximately 100 mm
MZ 2 VARIO-SP: 2.5 m3h~', 9 mbar (hPa), 6.5 kg. longer than the DC model.

For comparison: MZ 2 with a single-phase

40000 h of wide-range turbomolecular pumps. Furthermore, diaphragm pumps
in this operating mode run very silently and smoothly. Additionally, the fore-
vacuum pressure at the wide-range turbomolecular pump is improved (see also
Figure 7.8).

Diaphragm pumps are often used in oil-free leak detectors. While scroll
pumps feature higher pumping speed and lower ultimate vacuum, not required,
however, for wide-range turbomolecular pumps, diaphragm pumps have the
advantage of better sealing and considerably higher service lives of wearing parts.
This is true, even more, for speed-controlled diaphragm pumps, which also
reduce noise levels and power consumption.

Figure 7.13 shows a remarkably compact solution for a mobile, dry leak
detector: a two-stage diaphragm pump with electronically controlled DC drive.

7.22.11 Diaphragm Pumps Combined with Other Types of Vacuum Pumps
In certain applications, combinations of diaphragm pumps and pumps with
different types of operating principles are favorable.

Combining diaphragm pumps and Roots pumps [23] (Section 7.4.3) yields an
increase in pumping speed and lower ultimate pressure while generally maintain-
ing the advantages of the diaphragm pump, namely oil-free suction chambers.
Depending on the size of the Roots pump and the diaphragm pump, pumping
speeds vary between 6 and 35m®h™" and ultimate pressures from 10 to 30 Pa.
Gas-load controlled, frequency converter-operated Roots pumps are available as
very compact units without bypass and yield high pumping speeds even at com-
parably high pressures.

Very common as a chemical hybrid pump in certain medium-vacuum labora-
tory applications is a combination of a sliding vane rotary pump and a
diaphragm pump (Figure 7.14). This corrosion-optimized combination of a two-
stage sliding vane rotary pump and a diaphragm pump is made of widely
chemically resistant materials. The diaphragm pump continuously evacuates the
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@ ®

Figure 7.14 Chemical HYBRID pump system pump stages, and in between, ® an oil
with @ (optional) separator at the inlet and separator with overpressure relief valve @. Gas

emission condenser. The four-stage pump ballast for the sliding vane rotary pump is
includes @ two sliding vane rotary pump operated manually as required ® and
stages with ® two succeeding diaphragm continuously for the diaphragm pump @.

oil reservoir of the sliding vane rotary pump module. This prevents condensa-
tion problems in oil-sealed components and corrosion problems in nearly all
possible cases [24,25].

Only special applications feature combinations of diaphragm pumps and scroll
pumps (Section 7.3.5). By this, pumping speed and, in particular, ultimate pres-
sure of small, single-stage scroll pumps, limited in terms of ultimate pressure
due to internal leakage, can be improved considerably.

Combinations of claw pumps or screw-type pumps (Sections 7.4.2 and 7.4.1)
with small diaphragm pumps, operated as auxiliary pumps if required, can
reduce power consumption of large dry-runners by up to 70%, depending on
design, which then do not need to compress to atmospheric pressure.

7.3
Single-Shaft Rotating Positive Displacement Pumps

7.3.1
Liquid Ring Vacuum Pumps [26-32]

As early as 1890, the liquid ring vacuum pump was invented as a so-called water
ring pump, still comparable to basic designs of today. Due to the robust operating
behavior and characteristics, its compressor design is one of the most prominent in
vacuum pumps of chemical engineering. But also in other branches of industry, it is
widespread as a main pump or fore pump, combined with other types of vacuum
pumps, for low- and medium-high vacuum production. Established applications
include, for example, energy production, plastics industry, medical technology, food
and beverage industry, paper production, and building-materials industry.
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Liquid ring vacuum pumps are capable of pumping nearly any type of gas and
vapor. These machines feature an oil-free operating principle, low temperature
levels, and the possibility to deliver liquids alongside the gas flow. Increasingly,
applications in process technology emerge in which heat and material exchange
or chemical reactions are initiated inside the pump.

Liquid ring compressors are built for suction volume flows below 10 m*h™%,
and up to above 10 000 m3h™".

7.3.1.1 Design and Principle of Operation

In liquid ring pumps, a rotating ring of liquid transmits momentum and energy
to the delivered medium (Figure 7.15). An impeller drives the ring. Nearly iso-
thermal compression is obtained due to the intense contact between the deliv-
ered gas and the operating liquid.

The impeller is suspended eccentrically in a cylindrical housing (central body).
During operation, the rotating impeller carries along the pump fluid, which is
driven outward by centrifugal forces thus establishing a uniform fluid ring. The
impeller rises from the liquid ring on one side and submerges into it on the
other. Together with the liquid ring, the impeller blades form separate chambers,
and thus, the liquid enters into and emerges from the impeller cells in a piston-
like motion during rotation.

The lateral limits of the impeller cells are formed by guide disks equipped with
aspirating and pressure holes. The suction channel is arranged in the area where
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Figure 7.15 Operating principle of a liquid ring vacuum pump.
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the blades rise from the liquid. The pressure channel is at the opposite side
where the blades submerge.

Besides compressing the pumped gas, the working fluid has additional func-
tions. These include sealing the axial gap between the impeller and the guide
disk as well as transporting compression heat from the pumped gas. Due to the
intense contact between gas and liquid, the working liquid completely absorbs
the heat produced during compression. Thus, the temperature of the pumped
gas hardly rises and the compression can be considered quasi-isothermal. Com-
pared to other types of vacuum pumps, exhaust temperatures are low.

During operation, part of the liquid forming the ring is ejected continuously
on the outlet side, together with the pumped gas. A connection is provided in
order to allow supply of working liquid.

Water is the standard working fluid in most applications. However, in chemi-
cal engineering and pharmaceutical industry, for example, where reactive gases
and vapors are pumped, chemical properties of the delivered medium must be
taken into account when selecting the working fluid.

7.3.1.2 Operating Properties and Dimensioning
Physical properties of the working fluid, particularly vapor pressure (Section
3.5.1), influence the pumping behavior of a liquid ring vacuum pump.

When dry gases are sucked in, a small amount of working fluid evaporates at
the inlet of the vacuum pump. A state of saturation establishes in the impeller
cell, and thus, only part of the cell’s volume is available for gas transport.

In a vapor-saturated gas mixture, the partial pressure of the vapor is equal to
its vapor pressure. According to Dalton’s law (Section 3.1.4), the proportion of
vapor is proportional to the partial pressure:

Yorgor _ Prapor (7.3)
Vot Prot
This shows that the effective amount of displaced volume provided for gas trans-
port by the impeller cells depends on the temperature, that is, vapor pressure, of
the working fluid and on the inlet pressure.

When vapor-saturated gas is aspirated, no working fluid evaporates in the
impeller cells on the inlet side. Thus, the complete cell volume is available
for gas transport and the pumping speed is not reduced. If vapor from the
transported gas